K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

hình tự vẽ

a) cm \(\Delta ABH~\Delta CAH\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)(tỉ số đồng dạng)

\(\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{AH^2}{CH^2}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{BH.CH}{CH^2}=\frac{BH}{CH}\)(đpcm)

30 tháng 7 2017

a) Tính độ dài đoạn thẳng DE: 
DAE^ = ADH^ = AEH^ = 1v => ADHE là hình chữ nhật 
=> DE = AH 
mà AH^2 = HB.HC = 9.4 => AH = 3.2 = 6 
vậy DE = 6 

b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N ,CM:M là trung điểm của BH,N là trung điểm của CH. 
CEN^ = DEH^ ( góc có cạnh tương ứng vuông góc) 
ECN^ = DAH^ ( ------------nt--------------) 
DAH^ = DEH^ ( cùng chắn cung DH của đường tròn ngoại tiếp tứgiác ADHE) 
=> CEN^ = ECN^ => NE = NC (1) 
HEN^ = AED^ ( góc có cạnh tương ứng vuông góc) 
EHN^ = AHD^ ( -----nt-----) 
AED^ = AHD^ ( cùng chắn cung AD của đường tròn ngoại tiếp tứ giác ADHE) 
=> HEN^ = EHN^ => NE = NH (2) 
(1) và (2) => NC = NH hay M là trung điểm của CH. 
chứng minh tương tự M là trung điểm của BH. 

c) Tính diện tích tứ giác DENM 
DENM là hình thang vuông, có: 
DM = BH/2 = 4/2 = 2 
EN = CH/2 = 9/2 
S(DENM) = (DM + EN).DE/2 = (2 + 9/2).6/2 = 39/2 đvdt

toán chứng minh là nghề của mk

12 tháng 8 2018

i don't know ......

sorry ......

nha ....

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

a: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: ΔAHB vuông tại H có HD là đường cao

nên BH^2=BD*BA

=>BD=BH^2/BA

ΔAHC vuông tại H có HE là đường cao

nên CH^2=CE*CA

=>CE=CH^2/CA

BD/CE=BH^2/BA:CH^2/CA

\(=\dfrac{BH^2}{BA}\cdot\dfrac{CA}{CH^2}=\left(\dfrac{BA}{CA}\right)^4\cdot\dfrac{CA}{BA}=\left(\dfrac{BA}{CA}\right)^3\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)