K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)

nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)

hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)

21 tháng 3 2021

Chỉ cần giúp mình câu c thôi ạ.
 Mình cảm ơn

a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)

\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)

Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)

Xét ΔABC có 

\(M\in AB\)(gt)

\(N\in AC\)(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)

Do đó: MN//BC(Định lí Ta lét đảo)

17 tháng 5 2020

AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△MAB⇒△MAB cân tại MM

⇒BAMˆ=MBAˆ⇒BAM^=MBA^

Ta có:

BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^

HABˆ=900−HBAˆHAB^=900−HBA^

⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)

b)

Xét tam giác CADCAD và ABDABD có:

DˆD^ chung

ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^

⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)

⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD

⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)

Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)

⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA

⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC

⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)

Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH

⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)