K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Trong ΔCBM ta có góc KMC là góc ngoài tại đỉnh M

⇒∠(KMC) > ∠(MBC) (tính chất góc ngoài tam giác) (2)

Cộng từng vế (1) và (2) ta có: ∠(AMK) +∠(KMC) > ∠(ABM) +∠(MBC)

Suy ra: ∠(AMC) > ∠(ABC)

29 tháng 7 2017

bn tự lm đó hả Nguyen Thuy Hoa

22 tháng 10 2017

a) Góc AMK là góc ở đỉnh M của tam giác ABM 

=> góc AMK > góc ABK 

b) Góc KMC là góc ngoài tại đỉnh M của tam giác CBM 

=> góc KMC > góc CBK

=> góc AMK + góc KMC > góc ABK + góc CBK 

nên góc AMC > góc ABC 

P/s : tự vẽ hình nha 

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:a)tam giác ADE cân b)tam giác BOC cân c)OA là tia phân giác của góc BOC2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo...
Đọc tiếp

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:

a)tam giác ADE cân

b)tam giác BOC cân

c)OA là tia phân giác của góc BOC

2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo thứ tự là trung điểm của AD và BC. CMR:

a) tam giác AMD=tam giác CMB

 b) tam giác MEF đều

3.Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.

a) CMR BM=CN

b) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K. CM: tam giác BKM= tam giác CKN. Từ đó suy ra K thuộc AN

0
17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ

9 tháng 12 2016

A B C M N O

Bài này mình thấy chứng minh phần b trước thì ra phần a luôn =)))

b)Tam giác ABC có 2 góc bằng nhau: \(\widehat{ABC}=\widehat{ACB}\) =>Tam giác ABC cân tại A => AB=AC (1)

Tia BM là tia phân giác của góc ABC => \(\widehat{ABM}=\widehat{BM}C=\frac{1}{2}.\widehat{ABC}\)

Tia CN là tia phân giác của góc ACB => \(\widehat{ACN}=\widehat{NCB}=\frac{1}{2}.\widehat{ACB}\)

\(\widehat{ABC}=\widehat{ACB}\) <=> \(\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.\widehat{ACB}\) => \(\widehat{ABM}\)\(=\widehat{ACN}\) (2)

Xét \(\Delta ABM\)\(\Delta ACN\) có:

  • \(\widehat{BAC}\) là góc chung
  • AB=AC (suy ra ở (1))
  • \(\widehat{ABM}\)\(=\widehat{ACN}\) (suy ra ở (2))
=>\(\Delta ABM\)=\(\Delta ACN\) (g.c.g) (đpcm)
a)Theo chứng minh phần b ta có:\(\Delta ABM\)=\(\Delta ACN\) => BM=CN (2 cạnh tương ứng)

20 tháng 4 2017

Giải:

Thứ tự sắp xếp là: 5, 1, 2, 4, 3.

20 tháng 4 2017

Góc ABC không phải là góc xen giữa BC và CA, Góc A'BC không phải là góc xen giữa hai cạnh BC và CA'. Do đó không thể sử dụng trường hợp cạnh góc cạnh để kết luận ∆ABC=∆A'B 'C' được.

7 tháng 8 2018

Góc ABC không phải là góc xen giữa BC và CA, Góc A'BC không phải là góc xen giữa hai cạnh BC và CA'. Do đó không thể sử dụng trường hợp cạnh góc cạnh để kết luận ∆ABC=∆A'B 'C' được.

19 tháng 1 2021

a, xét △ AMB và △ AMC có:

                AB=AC(gt)

                góc BAM=góc CAM (gt)

                AM chung

=> △ AMB= △ AMC(c.g.c)

b,xét △ AHM và △ AKM có:

                AM cạnh chung

                góc HAM=ˆgóc KAM (gt)

=>△ AHM= △ AKM(CH-GN)

=> AH=AK

c,gọi I là giao điểm của AM và HK

xét △ AIH và △ AIK có:

            AH=AK(theo câu b)

            góc AIH=ˆgóc AIK (gt)

            AI chung

=> △ AIH=△ AIK (c.g.c)

=> góc AIH=ˆgóc AIK 

mà góc AIH+góc AIK=180độ(2 góc kề bù)

=> HK ⊥ AM

19 tháng 1 2021

Cho 1000 like & 1000 ❤