K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 12 2016
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Ta có hình vẽ:
A B C D E F I
Ta có: AB // DF hay AE // DF
=> góc AEI = góc IFD (slt)
Ta có: AE // DE => góc EAI = góc IDF (slt)
Tổng ba góc trong tam giác = 1800
=> 1800 - AEI - EAI = 1800 - IFD - IDF
hay góc AIE = góc DIF (*)
Ta có: góc AEI = góc IFD (cmt) (**)
EI = FI (I là trung điểm EF) (***)
Từ (*),(**),(***) => tam giác AEI = tam giác DFI
=> AI = DI (2 cạnh tương ứng) (1)
Ta có: góc AIE = góc DIF (chứng minh trên)
Mà góc AIE + góc AIF = 1800 (kề bù)
=> góc DIF + góc AIF = 1800
hay AID = 1800
hay A,I,D thẳng hàng với nhau (2)
Từ (1),(2) => I là trung điểm của AD
-> Ta có đpcm.
bài làm tốt quá bạn ê
thank bạn nhìu !!!