Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>BC^2=3^2+4^2`
`<=>BC=5(cm)`
AM là đường trung tuyến của `\DeltaABC`
`=> AM = (BC)/2 = 5/2 (cm)`
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
tam giác ABC đều ; AM là trung tuyến
=> AM đồng thời là đường cao
=> AM _|_ BC
=> tam giác AMC vuông tại M
=> AM^2 + CM^2 = AC^2 (Pytago)
M là trung điểm của BC => CM = BC/2 = 6/2 = 3
AC = 6
=> AM^2 + 3^2 = 6^2
=> AM^2 = 27
=> AM = \(\sqrt{27}\) do AM > 0
Chú ý AM là đường cao, từ đó dùng Định lý Pytago tính được AM = 12 cm.