K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Kéo dài $GC$ cắt $AB$ tại $H$.

\(\Rightarrow \overrightarrow {GC}=\frac{2}{3}\overrightarrow{HC}=\frac{2}{3}(\overrightarrow{HA}+\overrightarrow{AC})\)

Do tam giác $ABC$ đều nên $CH$ là trung trực của $AB$

\(\Rightarrow \overrightarrow{HA}=\frac{1}{2}\overrightarrow{BA}\)

Vậy:

\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\frac{2}{3}(\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AC})\)

\(=\overrightarrow{AB}-\frac{1}{3}\overrightarrow{BA}-\frac{2}{3}\overrightarrow{AC}=\frac{4}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{AB}-\overrightarrow{AC})=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{CB})\)

Trên tia đối của $BC$ lấy $D$ sao cho \(BD=BC=a\)

\(\Rightarrow \overrightarrow{CB}=\overrightarrow{BD}\)

\(\Rightarrow \overrightarrow{AB}-\overrightarrow{GC}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{BD})=\frac{2}{3}\overrightarrow{AD}\)

\(\Rightarrow |\overrightarrow{AB}-\overrightarrow{GC}|=\frac{2}{3}|\overrightarrow{AD}|\)

Xét tam giác $ADC$ có trung truyến $AB$ bằng một nửa cạnh huyền $DC$ nên là tam giác vuông tại $A$

\(\Rightarrow AD=\sqrt{DC^2-AC^2}=\sqrt{(2a)^2-a^2}=\sqrt{3}a\)

Do đó \(|\overrightarrow{AB}-\overrightarrow{GC}|=\frac{2}{3}.\sqrt{3}a=\frac{2\sqrt{3}a}{3}\)

26 tháng 11 2017

cảm ơn nhìu ạ :)

13 tháng 12 2019

Xét tam  giác đều ANC có đường cao AH.

Do tam giác ANC là tam giác đều nên đường cao đồng thời là đường trung tuyến.

Ta có  A H =    A C . sin A C H ^ = a . sin 60 0 = a 3 2

G là trọng tâm tam giác nên:  A G ​ = 2 3 . A H =   2 3 . a 3 2 = a 3 3

Đáp án D

14 tháng 10 2018

Đáp án A

19 tháng 1 2017

Nếu G là trong tâm tam giác ABC thì

G A → + ​   G B → + ​   G C → =    0 → ⇔ A G → + ​   B G → + ​   C G → =    0 → ⇔ A G → + ​   B G → + ​   C G → =    0 → = 0

Đáp án C

19 tháng 10 2021

BG=a\(\sqrt{3}\)

BD+BC=6a

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

Kẻ \(\overrightarrow{AH}=\overrightarrow{GC}\)

ΔABC đều có G là trọng tâm

nên G là tâm đường tròn nội tiếp ΔABC

=>AG,CG,BG lần lượt là phân giác của góc \(\widehat{BAC};\widehat{ACB};\widehat{ABC}\)

ΔABC đều

=>\(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}=60^0\)

AG là phân giác của góc BAC

=>\(\widehat{BAG}=\widehat{CAG}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot60^0=30^0\)

CG là phân giác của góc ACB

=>\(\widehat{ACG}=\widehat{BCG}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)

Xét ΔGAC có \(\widehat{AGC}+\widehat{GAC}+\widehat{GCA}=180^0\)

=>\(\widehat{AGC}+30^0+30^0=180^0\)

=>\(\widehat{AGC}=120^0\)

\(\overrightarrow{AH}=\overrightarrow{GC}\)

=>AH//GC và AH=GC

Xét tứ giác AHCG có

AH//CG

AH=CG

Do đó: AHCG là hình bình hành

=>\(\widehat{GAH}+\widehat{AGC}=180^0\)

=>\(\widehat{GAH}=180^0-120^0=60^0\)

ΔABC đều có G là trọng tâm

nên \(AG=CG=BG=\dfrac{a\sqrt{3}}{3}=\dfrac{2\sqrt{3}\cdot\sqrt{3}}{3}=2\)

\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{HA}=\overrightarrow{HB}\)

\(\widehat{BAH}=\widehat{BAG}+\widehat{GAH}=30^0+60^0=90^0\)

=>ΔABH vuông tại A

AH=CG

mà 2

nên AH=2

ΔABH vuông tại A

=>\(BH^2=AB^2+AH^2\)

=>\(BH^2=\left(2\sqrt{3}\right)^2+2^2=16\)

=>BH=4

=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{HB}\right|=HB=4\)