K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho tam giác cân trên Ab lấy D trên Ac lấy E sao cho AD=EC=DE=CB.   a)Nếu AB>2Bc.tính góc A của tam giác ABC .        b) Nếu AB<BC. tính góc A của tam giác HBC2.Cho tam giác ABC(AB<AC). AD,AM là dường phân giác , đường trung tuyens của tam giác ABC . Đường thẳng qua D và vuông góc với AD cắt AC tại E . So sánh diện tích ADM và CEM3Cho tam giác ABC đặt trên các đoạn kéo dài của AB,AC các đoạn BD=CE. Gọi M là...
Đọc tiếp

1.Cho tam giác cân trên Ab lấy D trên Ac lấy E sao cho AD=EC=DE=CB.   a)Nếu AB>2Bc.tính góc A của tam giác ABC .        b) Nếu AB<BC. tính góc A của tam giác HBC

2.Cho tam giác ABC(AB<AC). AD,AM là dường phân giác , đường trung tuyens của tam giác ABC . Đường thẳng qua D và vuông góc với AD cắt AC tại E . So sánh diện tích ADM và CEM

3Cho tam giác ABC đặt trên các đoạn kéo dài của AB,AC các đoạn BD=CE. Gọi M là trung điể của BC, N là trung điểm DE. CMR MN song song đường phân giác trong của góc A của tam giác ABC

4. cho tứ giác ABCD đường thẳng AB và CD cắt nhau tại E. Gọi F,G là trung điểm của AC , BD . a) CMR diện tích EFG =1/4 diện tích ABCD b) Gọi M là giao điểm AD,BC . Chứng minh Fg đi qua trung điểm ME

5. Cho 2 đường thẳng ox và oy vuông góc với nhau và cắt nhau tại O, Trên ox lấy về hai phía của O hai đọan thẳng OA = 4cm; OB = 2cm. Gọi M là một điểm nằm trên đường trung trực của đọan AB. MA, MB cắt nhau với oy ở C và D. Gọi E là trung điểm của AC, F là trung điểm của BD.

a, CMR: MF + ME =1/2 (AC+BD)

b, đường thẳng CF cắt ox tại P. Chứng minh P là một điểm cố định khi M di chuyển trên đường trung trực của AB.

6.Cho ABC, đường thẳng d cắt AB, AC, trung tuyến AM tại E, F, N. a, CMR:AB/AE+AC/AF=2AM/MN        

b, Giả sử d // BC. Trên tia đối của tia FB lấy K, KN cắt AB tại P, KM cắt AC tại Q. CMR: PQ // BC.

7 Cho 0=<a,b,c=<1 . CMR a^2+b^2+c^2=< 1+a^2b+b^2c+c^2a

                   Mong các bạn giúp minh với , mình cần gấp lắm ^-^

 

0
17 tháng 8 2017

A B C M I D E N O K H 1

Gọi O là t/đ của BE. Gọi K ,H lần lượt là gđ của ON vs AC và MN vs AC

Xét tg BDE có N là t/đ của DE (gt) và O là t/đ của BE (cách vẽ)

=> ON là đg trung bình của tg BDE => ON=1/2.BD và ON//BD

Xét tg BCE có : M là t/đ cuae BC (gt) và O là t/đ của BE (cv)

=> OM là đg trung bình của tg BCE=> OM=1/2.EC và OM//BE

Ta có: ON=1/2.BD và OM=1/2.CE. Mà BD=CE (gt) nên OM=ON=> Tg OMN cân tại O=> ^OMN=^ONM

Do OM//EC => OM//AC (vì E thuộc AC)=> ^OMN=^NHK (so le trong). Mà ^ONM=^KNH(đ đ)=> ^NHK=^KNH(vi ^OMN=^ONM)

Ta có: \(\widehat{BAC}+\widehat{K_1}=180\) (vì ON//AB) => \(2\widehat{IAC}+\widehat{K_1}=180\) (vì AI là tia phân giác của ^BAC)    (*)

         \(\widehat{NHK}+\widehat{KNH}+\widehat{K_1}=180\) ( t/c tổng các góc trong tg) =>\(2\widehat{NHK}+\widehat{K_1}=180\)(vì ^NHK=^KNH)    (**)

Từ (*),(**) => ^IAC=^NHK. Mà 2 gó này ở vị trí đồng vị => MH//AI    hay MN//AI   (đpcm)

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
4 tháng 4 2020

A B C M N I K

a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)

=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)

 => \(CN=AC-AN=8-3=5\)

b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)

       NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)

=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)

=> MK = KN => K là trung điểm của MN

c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)

=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)

Ta có: BC2 = 102 = 100

   AB2 + AC2 = 62  + 82 = 100

=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)

=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)

5 tháng 4 2020

Hình bạn tự vẽ nhá

a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)

Gọi x là AN

NC là: 8 - x

Vì MN // BC, theo định lý Ta-lét ta có:

AMMB=ANNC⇔2,253,75=x8−x

⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)

⇔2,25(8−x)=3,75x

⇔18−2,25x=3,75x

⇔−2,25x−3,75x=−18

⇔−6x=−18

x=−18−6

x=3

Nên NC = 8 - x = 8 - 3 = 5 (cm)

Vậy AN = 3cm, NC = 5cm

b) Ta có: MN // BC (gt) (1)

 MK // BI, theo hệ quả của định lý Ta-lét ta có:

AKAI=MKBI (2)

Từ (1)  KN // IC, theo hệ quả của định lý Ta-lét ta có:

AKAI=KNIC (3)

Từ (2), (3) MKBI=KNIC(4)

Mà BI = IC (gt) (5)

Từ (4), (5) MK=KN

Nên K là trung điểm của MN