K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 9 2021

Đặt \(\overrightarrow{BF}=x.\overrightarrow{BC}\)

D là trung điểm AC \(\Rightarrow\overrightarrow{BD}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\)

DE=3BE \(\Rightarrow\overrightarrow{BE}=\dfrac{1}{4}\overrightarrow{BD}=-\dfrac{1}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}\)

Ta có:

\(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}=\dfrac{7}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}=\dfrac{7}{8}\left(\overrightarrow{AB}+\dfrac{1}{7}\overrightarrow{BC}\right)\)

\(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=\overrightarrow{AB}+x.\overrightarrow{BC}\)

Mà A, E, F thẳng hàng

\(\Rightarrow x=\dfrac{1}{7}\Rightarrow BF=\dfrac{1}{7}BC\Rightarrow\dfrac{BF}{FC}=\dfrac{1}{6}\)

NV
13 tháng 9 2021

undefined

19 tháng 8 2023

Để chứng minh F là trọng tâm của tam giác AMN, ta cần chứng minh ba đường phân giác AM, AN và FM đồng quy tại một điểm. Thực hiện theo các bước sau:

Bước 1: Chứng minh AM cắt FN tại điểm P.

Vì CM là đường phân giác của tam giác ABC nên từ hai tỉ lệ bằng nhau CD/DB = CE/EA ta có: AD
/ DB = AE/EC
Do đó, tam giác ADE và CDB đồng dạng theo tỷ lệ AD/DB = AE/EC.

Từ đó suy ra:
AM/MB = (AD + DM)/DB = (AE + EM)/(EC + CB) = AE/EC = AC/CE = AC/(AC/6) = 6 Tương tự,

ta có:
AN/NC = AD/DB = 2
FM/MB = FB + BM/MB = FB/(BC/3) + FM/(FM-MB) = 3

Vậy tam giác AMN đồng dạng với tam giác ABC theo tỷ lệ 6:2:3.

Bước 2: Chứng minh FM cắt AN tại một điểm Q.

Vì FM = 2FB nên từ tam giác FBM ta có FB = FM/2 = FM/2FB, do đó tam giác FNB đồng dạng với tam giác ABC theo tỷ lệ 1:2.

Vậy AM, FN và EQ đồng qui tại một điểm P.

Bước 3: Chứng minh đường phân giác FM cắt AN tại điểm P.

CM = FM và CN = FN, từ đó tam giác CMN và FMN đồng dạng theo tỉ lệ 1: 1.

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

19 tháng 5 2017

A B C H D M
Tam giác ABC cân tại A, H là trung điểm của BC nên \(AH\perp BC\).
\(\overrightarrow{AM}.\overrightarrow{BD}=\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{AD}\right)\left(\overrightarrow{BH}+\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{BH}+\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}+\overrightarrow{AD}.\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}\right)\) (do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{AH}.\left(\overrightarrow{BH}+\overrightarrow{HD}\right)+\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{HD}\right).\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\) ( do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{BH}\right)\)
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{HC}\right)\) ( doM là trung điểm của BC).
\(=\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{AC}\)
\(=0\) (Do \(HD\perp AC\) )