K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a) thì CM tam giác AED=tam giác MEC(c-g-c)=>MC=DA<=>MC=1/2AB

b) vì 2 tam giác trên bằng nhau =>CM//AB( tự cm so le trong nhé) và CM=AD(2 góc tương ứng rùi tự suy ra CM=BD)=>góc DCM=góc BDC ( so le trong) => tam giác DCM=tam giác DMB( c-g-c)=> DE//BC( góc DCM=góc BDC=> so le trong) rùi DM=BC( mà DE=EM ) nên DE=1/2BC

20 tháng 7 2017

a)Xét \(\Delta DEC\)\(\Delta FEA\)có:

EC=AE(E là trung điểm của AC)

\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)

DE=FE(gt)

=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)

=>FA=DC(2 cạnh tương ứng)

b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)

Mà 2 góc này ở vị trí so le trong=>FA//DC

=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)

Xét \(\Delta ADF\)\(\Delta DBC\)có:

FA=DC(theo phần b)

\(\widehat{FAD}=\widehat{CDB}\)(cmt)

AD=DB(D là trung điểm của AB)

=>DF=BC                             ;            \(\widehat{ADF}=\widehat{DBC}\)

\(DF=2DE\)           ;            Mà 2 góc này ở vị trí đồng vị

=>\(BC=2DE\)             ;            =>DE//BC

=>DE=\(\frac{1}{2}BC\)

Vậy DE=\(\frac{1}{2}\)BC;DE//BC

A B C D E F

Bài làm

Xét tam giác AED và tam giác CEF

Ta có: AE = EC ( E là trung điểm của AC )

    \(\widehat{AED}=\widehat{FEC}\)( hai góc đối đỉnh )

            ED = EF ( giả thiết )

=> Tam giác AED = tam giác CEF ( c.g.c )

b) Vì tam giác AED = tam giác CEF ( theo câu a )

=> FC = AD ( hai cạnh tương ứng )

Mà AD = BD ( giả thiết )

=> FC = BD 

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
20 tháng 1 2016

A B C D E F

27 tháng 12 2016

a) Xét tam giác AEDvà tam giác CÈ có :

AE=EC(vì E là trung điểm của AC )

góc DAE=góc FCE(so le trong)

DE=EF( vì E là trung điểm của F )

=> 2 tam giác bằng nhau theo trường hợp cgc(dpcm)

b)xét tam giác AED và tam giác CEF (cmt)

=> góc ADE=góc F

=> AB song song CF( có 2 góc bằng nhau ở vị trí so le trong )

c) xét tam giác BDC và tam giác FCD là

DB=CF (cmt )

góc BDC= góc F (cmt)

DC chung

=> 2 tam giác bằng nhau theo trương hợp cgc

d)tam giác BDC =tam giác FCD (cmt)

=> góc c = góc d

=> DE song song BC ( có 2 góc = nhau ở vị trí so le trong )

tam giác BDC = bằng tam giác FCD

=> BC=DF

=> DE = 1/2 DF

mà DE==BC

=> DE = 1/2 Bc (dpcm)

Dúng đó nha tich đúng cho mình nha ! thanks bạn nha nha !

27 tháng 12 2016

A B C D E F

a) Xét ΔAED và ΔCEF có:

AE = CE (suy từ gt)

\(\widehat{AED}\) = \(\widehat{CEF}\) (đối đỉnh)

ED = EF (gt)

=> ΔAED = ΔCEF (c.g.c).

b) Vì ΔAED = ΔCEF nên \(\widehat{DAE}\) = \(\widehat{ECF}\) (2 góc t ư )

mà 2 góc này ở vị trí so le trong nên AB // CF.

c) Vì ΔAED = ΔCEF nên AD = FC (2 cạnh t ư)

mà AD = DB (suy từ gt) => DB = FC

Do AB // CF hay DB // CF nên \(\widehat{BDC}\) = \(\widehat{DCF}\) (so le trong)

Xét ΔBDC và ΔFCD có:

BD = FC ( cm trên)

\(\widehat{BDC}\) = \(\widehat{DCF}\) (cm trên)

CD chung

=> ΔBDC = ΔFCD (c.g.c)

d) Lại do ΔBDC = ΔFCD nên \(\widehat{BCD}\) = \(\widehat{FDC}\) (2 góc t ư); DF = BC ( 2 cạnh t ư)

mà 2 góc này ở vị trí so le trong nên DE // BC

mà DE = \(\frac{1}{2}\)EF => DE = \(\frac{1}{2}\)BC.

22 tháng 10 2016

Giúp mk đi khocroi

17 tháng 2 2020

https://hentaiz.net/

17 tháng 2 2020

a)c/m tam giác ADE = tam giác CEF (c.g.c)

b)c/m dE là đường trung bình của tam giác ABC sau đó => DE//BC

từ đường trung bình => DE = !/2 BC