Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D E F N M P Q 1 1
Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )
Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng
Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)
Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)
\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)
\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)
\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)
b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)
Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)
Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)
\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)
c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 )
Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)
Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)
Suy ra \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.