K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

minh gợi ý theo cách của mình là: 

A B C M F Vì góc BAH là phân giác nên ta có: 

\(\frac{AB}{BE}=\frac{AH}{HE}\)   ( hãy chứng minh \(\frac{AB}{BE}=\frac{AF}{EC}\)nếu họ nói chứng minh CF ss AE thì ta có :  \(\frac{AH}{AF}=\frac{EH}{EC}\)hay \(\frac{AH}{HE}=\frac{ÀF}{EC}\)) vì hai tỉ số trên cùng bằng \(\frac{AH}{HE}\)sau đó tự chứng minh ....

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

13 tháng 6 2023

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )