K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

(Tự vẽ hình nhé!)

a) Xét \(\Delta ABM\)và \(\Delta DCM\)có:

\(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)

\(BM=CM\left(gt\right)\)

\(AM=DM\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b) Ta có: M là trung điểm BC

              M là trung điểm AD

\(\Rightarrow\)Tứ giác ABCD là hình bình hành

\(\Rightarrow AB\)// \(CD\)

c) Xét \(\Delta ABC\)có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\)

\(\Rightarrow AM\)vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow AM⊥BC\)

d) Câu này chưa hiểu => chưa giải

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

26 tháng 12 2017

A B C M D

*Xét ΔABM và ΔACM có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔABM = ΔACM (c - c - c)

*Vì ΔABM = ΔACM (cmt)

\(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD
30 tháng 12 2016

đề sai rồi. Làm gì có tam giác ABA?

26 tháng 12 2017

A B C D M F E

a) Xét hai tam giác ABM và DCM có:

MA = MD (gt)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

MB = MC (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Vì \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

\(\Rightarrow\) AB // DC

c) Xét hai tam giác vuông BEM và CFM có:

MB = MC (gt)

\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)

\(\Rightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)

\(\Rightarrow\) EM = FM

Hay M là trung điểm của EF.

27 tháng 12 2017

cam on da tra loi

30 tháng 12 2015

dễ thế này mà ko biết

 

30 tháng 12 2015

Xet tam giac ABM va tam giac DCM

BM=MC(gt)

AM=MD(gt)

BMA=DMC( 2 goc doi dinh)

=> tam gica ABM=tam giac DCM

b)tam giac BMD=tam giac CMA (c.g.c)

=> A= D( 2 goc tg ung)

ma 2 goc nay o vi tri SLT

=>BD//AC

tick mk nha cau c doi ti nua nho nhe