K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

18 tháng 5 2017

bạn tự vẽ hình nhé

a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)

=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF

ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)

nên ΔADF = ΔBED c.g.c

=> DF = ED (2 cạnh tương ứng) (1)

ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)

nên ΔADF = ΔCFE c.g.c

=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.

VậyΔDEFđều 

b) không biết làm

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

6 tháng 8 2017

Gọi (O’) là đường tròn đi qua bốn điểm B, H,C, K. Ta có dây cung  B C = R 3

BKC=60o= BAC nên bán kính đường tròn (O’) bằng bán kính R của đường tròn (O).

Gọi M là giao điểm của AH và BC thì MH vuông góc vi BC, k KN vuông góc vi BC (N thuc BC), gọi I là giao điểm của HK và BC.

15 tháng 2 2018

a, HS tự chứng minh

b, Chi ra rằng A,H,O cùng nằm trên đường thẳng vuông góc với BC;

c, Để H ∈ (O) thì OH = OC =>  C O A ^ = 60 0