\(\widehat{A}\)=90 độ, M là trung điểm của AC. Trên tia đối...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/67802117915.html

Bạn vào link này xem nhé

Học tốt!!!!!!!

27 tháng 3 2020

M A B C D

a) Xét tam giác ABM và CDM có : 

MA = MC ( gt ) 

MB = MD ( gt ) 

Góc AMB = góc CMD ( đối đỉnh ) 

=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm

b) Tam giác ABM = tam giác CDM 

=> góc BAM  = góc DCM 

=> AB // CD ( so le )

c) Ta có : 

BE =AB 

=> B là trung điẻm AE

  M là trung điểm AC 

=> BM là đường trung bình tam giác ACE 

=> BM = 1/2 .EC ( đpcm ) 

16 tháng 1 2019

A B C E D N M K H

CM : a)Xét t/giác ABC và t/giác ADE

có AB = AD (gt)

  góc EAD = góc BAC (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác ADE (c.g.c)

=> ED = BC (hai cạnh tương ứng) (Đpcm)

=> góc E = góc C (hai góc tương ứng)

Mà góc E và góc C ở vị trí so le trong

=> ED // BC (Đpcm)

b) Ta có: t/giác ABC = t/giác ADE (cmt)

=> góc D = góc B (hai góc tương ứng) (1)

Mà góc EDM = góc MDA = góc D/2 (2)

   góc ABN = góc NBC = góc B/2 (3)

Từ (1); (2); (3) => góc EDM = góc NBC

Xét t/giác EMD và t/giác CNB

có ED = BC (cmt)

góc EDM = góc NBC (cmt)

 góc E = góc C (cmt)

=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)

c) Ta có: t/giác EMD = t/giác CNB (cmt)

=> MD = BN (hai cạnh tương ứng)

Mà MK = KD = MD/2

    BH = HN = BN/2

=> KD = BH 

Từ (1); (2); (3) => góc MDA = góc ABN

Xét t/giác ADK và t/giác ABN

có AD = AB (gt)

 góc MDA = góc ABN (cmt)

 KD = BH (cmt)

=> t/giác ADK = t/giác ABN (c.g.c)

=> góc KAD = góc BAH (hai góc tương ứng)

Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800

hay góc BAM + góc MAK + góc BAH = 1800

=> ba điểm K, A,H thẳng hàng (Đpcm)

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
8 tháng 12 2018

a, xét tam giác abm vvaf tam giác dmc có

am=md(gt)

bm=mc(gt)

góc amb=góc cmd(đối đỉnh)

=>tam giác abm=tam giác dmc(cgc)

b, từ cm a ta có tam giác abm=tam giác dmc(cgc)

=>góc bam = góc mdc (2 góc tg ứng)

mà 2 góc lại nằm ở vị trí so le trg

=>ab//cd

29 tháng 11 2016

A B C E D F F'

a)

Xét \(\Delta ABD\)\(\Delta EBD\) có :

BA = BE ( gt )

\(\widehat{ABD}\) = \(\widehat{EBD}\) ( gt )

BD chung

=> \(\Delta ABD\) =\(\Delta EBD\) ( c . g . c )

=> DA = DE

b)

Kéo dài DE cắt AB tại F' .

Ta c/m được : \(\Delta ADF'=\Delta EDC\left(g.c.g\right)\)

=> DF' = DC

Mà DF = DC

=> D trùng với F'

=> A ; B ; F thẳng hàng .

c)

Dễ dàng c/m BF = BC

=> Tam giác BFC cân tại B

Mà AD là tia phân giác

=> AD cũng là đường cao .

29 tháng 11 2016

bạn giải câu b và c rõ hơn đi

 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0