\(\widehat{A}\)> 90 độ, cho D \(\in\)A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Xét tam giác DEA có góc A=90 do :

DE^2=DA^2+AE^2 

Xét tam giác BAC có góc A = 90 do 

BC^2=AB^2+AC^2

mà AB>AD( D nằm giữa A và B)

AC>AE(E nằm giữa A và C)

=>DE<BC

19 tháng 7 2018

A B C D E H

a) xét \(\Delta ADE\) và \(\Delta ABC\) có

 \(AD=AB\)

  \(AE=AC\)

\(\widehat{BAC}=\widehat{DAE}=90^0\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)

\(\Rightarrow DE=BC\)  ( 2 cạnh tương ứng = nhau)

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
27 tháng 11 2016

a.Xét tam giác DAB và tam giác DAE , ta có :

AB = AE

A1 = A2

AD là cạnh chung

ð Tam giác DAB = tam giác DAE

ð BD = DE ( 2 cạnh tương ứng )

b.V ì tam giác DAB = tam giác DAE

=> B2 = E2 ( 2 góc tương ứng )

Ta có :

B1 + B2 = 180o ( 2 góc tương ứng )

E1 + E2 = 180o ( 2 góc tương ứng )

=> B1 = E1

Ta có :

À – AB = BF

AC-AE= EC

Biết : AE = AC ; AB = AE ( gt )

=>BF = EC

Xét tam giác BDF và tam giác EDC có :

BE = FC ( cmt )

B1 = E1( cmt )

BD = ED ( cm câu a )

=> tam giác BDF = tam giác EDC

27 tháng 11 2016

c.Vì tam giác BDF = tam giác EDC ( cmt )

=>\(\widehat{D_1}\) = \(\widehat{D_2}\) ( 2 góc tương ứng )

\(\widehat{D1}+\widehat{FDC=180^o}\) ( 2 góc kề bù )

=>\(\widehat{D_2+}\widehat{FDC}=180^o\)

=> \(\widehat{EDF=180^o}\)

=> E,D,F thẳng hàng

24 tháng 2 2020

a) Xét tgiac ABC và ADE có:

+ góc BAC = DAE = 90 độ (góc kề bù)

+ AB = AE 

+ AC = AE

=> Tgiac ABC = ADE (c-g-c)

=> DE = BC (2 cạnh t/ứng)

=> đpcm

b) Gọi O là giao điểm của DE và BC

Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB

=> góc OEB + góc B = góc B + ACB

Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)

=> góc OEB + B = 90 độ

Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ

=> DE  vuông góc BC (đpcm)

c) 4. góc B = 5. góc C => góc B = 5/4. góc C

Mà tổng góc B + góc C = 90 độ

=> (tổng tỉ) => góc C = 40 độ

=> góc AED = 40 độ