Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình và làm câu a,b rồi đúng ko. Vậy mik sẽ làm cho bạn câu c nhé
c. ME là đuòng trung bình của tam giác BDC(cmt)
Suy ra ME=1/3 BD(1)
Xét tam giác AME có:
I là trung điểm của AM
D là trung điểm của AE
Suy ra DI là đường trung bình của tam giác AME
Suy ra DI=1/2 ME (2)
Từ (1) và (2) suy ra DI=1/4BD
Suy ra DI=1/4(BI+DI)
DI= 1/4BI+1/4DI
DI= 1/4DI= 1/4 BI
3/4DI=1/4BI
Suy ra DI=BI:3
DI=9:3=3(cm)
Bài này thực ra mik đuọc làm ở lớp học thêm rồi nên mik hướng dẫn cho bạn
hok tốt
Lời giải:
a)
Xét tam giác $BCD$ có \(BM=MC, CE=ED\Rightarrow \frac{MC}{BM}=\frac{CE}{DE}\)
Do đó theo định lý Thales đảo thì \(ME\parallel BD\Leftrightarrow ME\parallel ID\)
Ta có đpcm.
b)
Xét tam giác $AME$ có \(ID\parallel ME\) thì áp dụng định lý Thales thuận suy ra \(\frac{AI}{IM}=\frac{AD}{DE}=1\Leftrightarrow AI=IM\)
c)
Tam giác $BCD$ có \(EM\parallel BD\Rightarrow \frac{1}{2}=\frac{CM}{CB}=\frac{EM}{BD}\Rightarrow BD=2EM\)
Tam giác $AME$ có \(ID\parallel ME\Rightarrow \frac{1}{2}=\frac{AD}{AE}=\frac{ID}{ME}\Rightarrow ME=2ID\)
Từ hai điều trên suy ra
\(\frac{ID}{BD}=\frac{1}{4}\Leftrightarrow 4DI=BD=BI+ID\Rightarrow 3DI=BI=9\)
\(\Leftrightarrow DI=3 (cm)\)
bạn à mình hỏi nếu làm ý a) mà ko cần dùng định lý Thales thì như nào? mình chưa học đến định lí đó nên chưa áp dụng đc vào bài
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay EM//ID
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
Suy ra: AI=IM
Hình bn tự vẽ nhé
a, Do E, M lần lượt là trung điểm của DC, BC
=> EM là đường trung bình trong \(\Delta\)BDC
=> EM // BD
b, Trong \(\Delta\)AEM có:
D là trung điểm của AE
DI // EM ( I thuộc DB )
=> ID là đường TB trong \(\Delta\)AEM
=> I là trung điểm của AM
c, ID đường TB trong \(\Delta\)AEM
=> ID = 1/2.EM
Mà EM=1/2.BD (do EM là đường TB trong \(\Delta\)DBC )
=> ID = 1/4.BD
a,E là trung điểm DC, M là trung điểm BC =>ME//BD
b, BD//ME => ID//ME => I là trung điểm của AM
c, ID=1/2ME, ME=1/2BD => ID=1/4BD
a) Ta có: \(AD=\dfrac{1}{2}DC\)(gt)
mà \(EC=ED=\dfrac{DC}{2}\)(E là trung điểm của DC)
nên AD=EC=ED
b) Xét ΔCDB có
M là trung điểm của BC(gt)
E là trung điểm của CD(gt)
Do đó: ME là đường trung bình của ΔCDB(Định nghĩa đường trung bình của tam giác)
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)(Định lí 2 về đường trung bình của tam giác)
hay ME//ID
Xét tứ giác MEDB có ME//BD(cmt)
nên MEDB là hình thang có hai đáy là ME và BD(Định nghĩa hình thang)
c) Xét ΔAME có
D là trung điểm của AE(AD=DE, D nằm giữa A và E)
DI//ME(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
hay IA=IM(Đpcm)
a) Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
⇒ EM//BD
hay EM//ID
b) Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
⇒ AI=IM
c. ME là đường trung bình của tam giác BDC(cmt)
⇒ ME=1/3 BD(1)
Xét tam giác AME có:
I là trung điểm của AM
D là trung điểm của AE
⇒ DI là đường trung bình của tam giác AME
⇒ DI=1/2 ME (2)
Từ (1) và (2) suy ra DI=1/4BD
⇒ DI=1/4(BI+DI)
DI= 1/4BI+1/4DI
DI= 1/4DI= 1/4 BI
3/4DI=1/4BI
⇒DI=BI:3
DI=9:3=3(cm)