Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\) có G là trọng tâm => \(\frac{DG}{AD}=\frac{EG}{BE}=\frac{FG}{CF}=\frac{1}{3}\)(1)
\(\frac{S_{AGB}}{S_{ABC}}=\frac{FG}{CF}\)(2)
\(\frac{S_{BGC}}{S_{ABC}}=\frac{GD}{AD}\)(3)
\(\frac{S_{AGC}}{S_{ABC}}=\frac{GE}{BE}\)(4)
Từ (1),(2),(3),(4) => SABG=SBGC=SAGC
────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
(⁀‵⁀) ✫ ✫ ✫.
`⋎´✫¸.•°*”˜˜”*°•✫
..✫¸.•°*”˜˜”*°•.✫
☻/ღ˚ •。* ♥ ˚ ˚✰˚ ˛★* 。 ღ˛° 。* °♥ ˚ • ★ *˚ .ღ 。
/▌*˛˚ღ •˚ Type your status message ˚ ✰* ★
GOOD ♥
(¯`♥´¯).NİGHT.♥
.`•.¸.•´(¯`♥´¯)..SWEET ♥
*****.`•.¸.•´(¯`♥´¯)..DREAMS ♥
***********.`•.¸.•´(¯`♥´¯)..♥
...***************.`•.¸.•´……♥ ♥
..... (¯`v´¯)♥
.......•.¸.•´
....¸.•´
... (
☻/
/▌♥♥
/ \ ♥Type your status message♥
hello
cho tam giác ABC có G là trọng tâm. Diện tích của các tam giác AGB, BGC, AGC có bằng nhau hay không?
a: Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyên của ΔABC
mà ΔABC cân tại A
nên AG là phân giác của góc BAC
b ΔACB cân tại A
mà AG là trung tuyến
nên AG là trung trực của BC
=>GB=GC
c: Xét ΔGAC có
CK,AI,GD là trung tuyến
=>CK,AI,GD đồng quy
=>CD,AI,BD đồng quy
a: Kẻ AH\(\perp\)BC
Xét ΔABD có AH là đường cao
nên \(S_{ABD}=\dfrac{1}{2}\cdot AH\cdot BD\)
Xét ΔACD có AH là đường cao
nên \(S_{ACD}=\dfrac{1}{2}\cdot AH\cdot CD\)
\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}\cdot AH\cdot BD}{\dfrac{1}{2}\cdot AH\cdot CD}=\dfrac{BD}{CD}=1\)
=>\(S_{ABD}=S_{ACD}=\dfrac{1}{2}\cdot S_{ABC}\)
b: Xét ΔABC có
AD,BE,CF là các đường trung tuyến
AD,BE,CF đồng quy tại G
Do đó: G là trọng tâm của ΔABC
=>\(AG=\dfrac{2}{3}AD\)
=>\(S_{ABG}=\dfrac{2}{3}\cdot S_{ABD}=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{3}\cdot S_{ABC}\)
Xét ΔABC có
AD,BE,CF là trung tuyến
AD,BE,CF cắt nhau tai G
=>G là trọng tâm
=>BG=2/3BE=2BM và CG=2/3CF=2CN
=>M,N lần lượt là trung điểm của GB,GC
=>GD,CM,BN đồng quy
=>AD,CM,BN đồng quy