Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B Co C1 O A1 Ao C B1 Bo H
Đặt \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OH}\)
Ta sẽ chứng minh \(\overrightarrow{u}=\overrightarrow{O}\)
Gọi A1, B1, C1 theo thứ tự là hình chiếu của A, B, C ( cũng là hình chiếu của H) trên các đường thẳng BC, CA, AB và gọi Ao, Bo, Co theo thứ tự là trung điểm BC, CA, AB (như hình vẽ)
Chiếu vectơ \(\overrightarrow{u}\) lên đường thẳng BC theo phương của \(\overrightarrow{AH}\) ta được
\(\overrightarrow{u_a}=\overrightarrow{A_oA_1}+\overrightarrow{A_oB}+\overrightarrow{A_oC}-\overrightarrow{A_oA_1}=\overrightarrow{O}\)
Suy ra \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{AH}\) (1)
Tương tự như vậy,
ta cũng có \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{BH,}\overrightarrow{CH}\) (2)
Từ (1) và (2) và do các vectơ \(\overrightarrow{AH,}\), \(\overrightarrow{BH},\overrightarrow{CH}\) đôi một không cùng phương suy ra \(\overrightarrow{u}=\overrightarrow{O}\)
Vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
Nhưng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\) nên \(\overrightarrow{OH}=3\overrightarrow{OG}\)
Do đó G, H, O thẳng hàng
- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \(\overrightarrow{\Rightarrow AH}=\overrightarrow{B'C}\)
Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow{v}=\overrightarrow{B'C}\)
- Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow{OO'}=\overrightarrow{B'C}\). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .
- Tam giác MPQ có QA là một đường cao , vì vậy nếu ta kẻ MM’ vuông góc với PQ thì MM’ cắt QA tại trực tâm H . OA là đường trung bình của tam giác MNH suy ra : \(\overrightarrow{MH}=2\overrightarrow{OA}=\overrightarrow{BA}\). Vậy phép tịnh tiến theo \(\overrightarrow{BA}\) biến điểm M thành điểm H . Nhưng M chạy trên (O;AB) cho nên H chạy trên đường tròn ảnh của (O;AB) qua phép tịnh tiến \(\overrightarrow{BA}\) .
- Tương tự đối với tam giác NPQ .
- Giới hạn quỹ tích . Do M không trùng với A,B cho nên trên đường tròn ảnh bỏ đi hai điểm ảnh của A,B => thỏa mãn yêu cầu bài toán .
Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là
+ = 8
Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là
+ = 8
a/ Giả sử \(O_1\) là tâm của đường tròn ngoại tiếp tam giác HBC , thì \(O_1\) chính là ảnh của (O) qua phép đối xứng trục BC . Cho nên bán kính của chúng bằng nhau . Tương tự hai đường tròn ngoại tiếp của hai tam giác còn lại có bán kính bằng bán kính của (O) .
b/ Ta hoàn toàn chứng minh được \(O_1;O_2;O_3\) là các ảnh của O qua phép đối xứng trục BC,CA,AB . Vì vậy bán kính các đường tròn này bằng nhau . Mặt khác ta chứng minh tam giác ABC bằng tam giác
a/ Giả sử \(O_1\) là tâm của đường tròn ngoại tiếp tam giác HBC , thì \(O_1\) chính là ảnh của (O) qua phép đối xứng trục BC . Cho nên bán kính của chúng bằng nhau . Tương tự hai đường tròn ngoại tiếp của hai tam giác còn lại có bán kính bằng bán kính của (O) .
b/ Ta hoàn toàn chứng minh được \(O_1;O_2;O_3\) là các ảnh của O qua phép đối xứng trục BC,CA,AB . Vì vậy bán kính các đường tròn này bằng nhau . Mặt khác ta chứng minh tam giác ABC bằng tam giác \(O_1;O_2;O_3\)