Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{8}{12}=\dfrac{2}{3}\)
=>\(\dfrac{BM}{BC}=\dfrac{2}{3}\)
=>\(BM=\dfrac{2}{3}\cdot BC=\dfrac{2}{3}\cdot24=16\left(cm\right)\)
Ta có: BM+MC=BC
=>MC+16=24
=>MC=8(cm)
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = \(\frac{1}{2}\) BC.
Ta thấy: SABM = SAMC = \(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN = \(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Bạn tự vẽ hình được rồi nha, mình không biết vẽ trên trang này kiểu nào)
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = $\frac{1}{2}$12 BC.
Ta thấy: SABM = SAMC =\(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN =\(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
\(S_{AMC}=\dfrac{2}{3}\times S_{ABC}\) (chung đường cao hạ từ \(A\), \(MC=\dfrac{2}{3}\times BC\))
\(S_{CMN}=\dfrac{1}{3}\times S_{CMA}\) (chung đường cao hạ từ \(C\), \(CN=\dfrac{1}{3}\times CA\))
\(=\dfrac{1}{3}\times\dfrac{2}{3}\times S_{ABC}=\dfrac{2}{9}\times S_{ABC}\)
\(S_{ABMN}=S_{ABC}-S_{CMN}=S_{ABC}-\dfrac{2}{9}\times S_{ABC}=\dfrac{7}{9}\times S_{ABC}=\dfrac{28}{3}\left(cm^2\right)\)