Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ADO\)và \(\Delta CBO\)có :
\(OD=OB\left(gt\right)\)
\(OA=OC\left(gt\right)\)
\(\widehat{AOx}=\widehat{BOy}\left(gt\right)\)
\(\Rightarrow\) Hai tam giác trên bằng nhau
\(\Rightarrow AD=BC\) ( 2 cạnh tương ứng )
tự vẽ hình nha
a)góc AOx và BOy ko có đối đỉnh.Vì hai góc đều nằm trên cùng nửa mặt phẳng
b)ta có góc xOz=góc xOA + góc AOz=180 độ (1)
Mà góc xOA=40 độ suy ra góc AOz = 140 độ
ta lại có góc AOB=góc AOz+ góc BOz (2)
mà góc AOz =180 độ suy ra góc BOz=40 độ
Từ (1) và (2) ta có góc BOy = 40 độ và góc BOz = 40 độ
vì vậy OB là tia phân giác của góc zOy
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{COB}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=BC
b: Ta có: ΔOAD=ΔOCB
nên \(\widehat{OAD}=\widehat{OCB}\)
mà \(\widehat{MAB}=180^0-\widehat{OAD}\)
và \(\widehat{MCD}=180^0-\widehat{OCB}\)
nên \(\widehat{MAB}=\widehat{MCD}\)
Xét ΔMAB và ΔMCD có
\(\widehat{MAB}=\widehat{MCD}\)
AB=CD
\(\widehat{MBA}=\widehat{MDC}\)
Do đó: ΔMAB=ΔMCD