K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

giúp mk đi mk k cho

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.a,So sánh diện tích hai tam giác ABC và ADCb,So sánh diện tích hai tam giác ABM và ACMc,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 2,Trên hình vẽ ABCD là hình thang.a,Hãy tìm các hình tam giác có diện tích bằng nhaub,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng...
Đọc tiếp

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.
a,So sánh diện tích hai tam giác ABC và ADC
b,So sánh diện tích hai tam giác ABM và ACM
c,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 
2,Trên hình vẽ ABCD là hình thang.
a,Hãy tìm các hình tam giác có diện tích bằng nhau
b,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng 4m. Tính độ dài mỗi đáy hình thang. Biết rằng khi giảm đáy lớn 1m thì diện tích hình thang giảm 1m2.
3,Cho tam giác ABC. P là trung điểm của cạnh BC; nối AP,trên AP lấy điểm M,N sao cho AM = MN = NP. Biết diện tích tam giác NPC = 60 cm2
a,Tính diện tích các tam giác AMC,MNC,ABP
b,Kéo dài BN cắt AC ở Q. Chứng tỏ rằng Q là trung điểm của cạnh AC.
4,Cho tam giác ABC có MC = 1/4 BC,BK là đường cao của tam giác ABC,MH là đường cao của tam giác AMC có AC là đáy chung. So sánh độ dài BK và MH?

5
13 tháng 12 2016

Ko biết, chắt bàng 1.3,2.3,3.5,4.17

11 tháng 1 2017

KO BIET LAM

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . a) Tính diện hình vuông ABCDb) Tính diện tích hình AECPc) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau...
Đọc tiếp

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .

Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . 

a) Tính diện hình vuông ABCD

b) Tính diện tích hình AECP

c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN

Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .

Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm ,  cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm  M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE

 

14
15 tháng 5 2016

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

15 tháng 5 2016

5 người đầu tiên mình sẽ được mình tích

2 tháng 3 2020

ko bít

31 tháng 12 2018

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

29 tháng 6 2021

a, - Ta có : \(\left\{{}\begin{matrix}S_{AMD}=\dfrac{1}{2}AM.h\\S_{ADC}=\dfrac{1}{2}AC.h\end{matrix}\right.\)

\(AC=3AM\)

\(\Rightarrow S_{ADC}=3S_{AMD}\)

Lại có : \(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}BC.h\\S_{ADC}=\dfrac{1}{2}DC.h\end{matrix}\right.\)

\(BC=2DC\)

\(\Rightarrow S_{ABC}=2S_{ADC}=2.3S_{ADM}=6S_{ADM}\)

b, CMTT câu a ta được : \(\left\{{}\begin{matrix}S_{AMN}=\dfrac{1}{6}S_{ABC}\\S_{CMD}=\dfrac{1}{3}S_{ABC}\\S_{BND}=\dfrac{1}{4}S_{ABC}\end{matrix}\right.\)

\(\Rightarrow S_{DMN}=\left(1-\dfrac{1}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)S_{ABC}=\dfrac{1}{4}S_{ABC}=160\left(cm^2\right)\)

 

 

29 tháng 6 2021

Sai cách lớp 5 rồi