K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

A B C M P

a) Diện tích của tam giác ABC là:

\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)

b) Ta có: N là trung điểm của AB

              M là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//AC\)

Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)

Suy ra: \(MN\perp AB\)

c) Trong tứ giác AMBP:

Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)

=> Tứ giác AMBP là hình bình hành

Mà \(MN\perp AB\)  (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)

=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

a: Ta có: Q và A đối xứng với nhau qua MN

nên MN là đường trung trực của QA

=>MN vuông góc với QA tại trung điểm của QA

Ta có: Q và B đối xứng với nhau qua MP

nên MP là đường trung trực của QB

=>MP vuông góc với QB tại trung điểm của QB

Xét tứ giác MRQS có 

\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)

Do đó: MRQS là hình chữ nhật

b: Xét ΔMNP có

Q là trung điểm của NP

QS//MN

Do đó: S là trung điểm của MP

Xét tứ giác MQPB có 

S là trung điểm của MP

S là trung điểm của QB

Do đó: MQPB là hình bình hành

mà QM=QP

nên MQPB là hình thoi