Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
a: Ta có: Q và A đối xứng với nhau qua MN
nên MN là đường trung trực của QA
=>MN vuông góc với QA tại trung điểm của QA
Ta có: Q và B đối xứng với nhau qua MP
nên MP là đường trung trực của QB
=>MP vuông góc với QB tại trung điểm của QB
Xét tứ giác MRQS có
\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)
Do đó: MRQS là hình chữ nhật
b: Xét ΔMNP có
Q là trung điểm của NP
QS//MN
Do đó: S là trung điểm của MP
Xét tứ giác MQPB có
S là trung điểm của MP
S là trung điểm của QB
Do đó: MQPB là hình bình hành
mà QM=QP
nên MQPB là hình thoi