Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó:AMCD là hình bình hành
Suy ra: CD//AM và CD=AM
=>CD//MB và CD=MB
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
c)
A B C P
Nối B và P ta được đoạn thẳng BP
Do tam giác AMN = tam giác CPN nên
Góc MAN = góc PCN
Mà 2 góc này so le trong với nhau nên
MA // CP
Mà MA và MB cùng nằm trên cùng 1 đoạn thẳng nên
MB // CP
=> Góc MBP = góc BPC
Xét tam giác MBP và tam giác BPC có
- MB = CP (câu b)
- Góc MBP = góc BPC (Cmt)
- BP là cạnh chung
=> Tam giác MBP = Tam giác CPB
=> Góc CBP = góc MPB
=> MP // CB
Mà MN nằm trên MP
=> MN// BC
Ta có tam giác MBP = Tam giác CPB
=> MP = BC (2 cạnh tương ứng)
Ta có MN = NP và MP + NP = MP
=> MN = NP = \(\frac{MP}{2}\)
Mà MP = BC
=> MN = \(\frac{BC}{2}\)
Chúc bạn hok tốt
Đây hình như là toán Lương Thế Vinh phải ko bạn?
#TTVN
đây là đề đề đề nghị trường Nguyễn Trãi
trường nào mình cũng có đề đề nghị hết nếu muốn mình cho
KẾT BẠN NHA!
bài này, nếu giải theo theo kiến thức lớp 8 thì quá dễ luôn
Câu a đề sai nhé, phải là BM = CD mới đúng
a) Xét tam giác ANM và tam giác CND có:
AN = CN ( N là trung điểm của AC)
Góc MNA = góc DNC ( đối đỉnh)
NM = ND (gt)
=> Tam giác ANM = tam giác CND (c-g-c)
=> AM = CD (2 cạnh tương ứng)
Mà AM = BM (M là trung điểm của AB)
=> CD = BM
b) Ta có: M là trung điểm của AB (gt)
N là trung điểm của AC ( gt)
=> MN là đường trung bình của tam giác ABC
=> MN=1/2BC
MN//BC
a, C/m CP // AB
Xét ΔANM và ΔCNP. Ta có:
NM = NP (gt)
∠N1 = ∠N2 (đối đỉnh)
NA = NC (gt)
⇒ ΔANM = ΔCNP (c.g.c)
Nên: ∠A = ∠C1 (hai góc tương ứng)
Mà ∠A và ∠C1 ở vị trí so le trong
⇒ CP // AB
b, C/m MB = CP
Ta có: MA = CP (vì ΔANM = ΔCNP)
Mà MA = MB (gt)
⇒ MB = CP
c, C/m BC = 2MN
Nối BP. Xét ΔMBP và ΔCPB. Ta có:
BM = CP (gt)
∠B1 = ∠P1 (so le trong)
BP cạnh chung
⇒ ΔMBP = ΔCPB (c.g.c)
Nên: MP = BC (hai cạnh tương ứng)
Mà: MP = 2MN (vì N là trung điểm của MP)
⇒ BC = 2MN