Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có định lý như thế này: Trong tam giác VUÔNG, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
Giờ bạn làm ngược lại là ra nhé
Gợi ý nhé, trên tia đối tia MA lấy điểm H/ MA=MH
Nếu bạn cần cách giải thì bảo mình nhé, nhớ tick đúngcho mik nha ^^
ko mik cần lời giải cơ
mik mới lớp 6 lên 7 thôi biết gì mấy định lí
a) Có M là trung điểm BC (đề bài)
=> AM là đường trung tuyến
mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)
=> Tam giác ABC vuông tại A
=> Góc A = 90 độ
Câu b,c đang nghĩ nhé
N N N A A A C C C B B B M M M
a) Xét \(\Delta\)AMB và \(\Delta\)NMC có :
AM = NM(gt)
MB = MC(vì M là trung điểm của BC)
\(\widehat{M}\)chung
=> \(\Delta\)AMB = \(\Delta\)NMC (c.g.c)
=> CN = AB(hai cạnh tương ứng)
Lại có : \(\Delta\)AMB = \(\Delta\)NMC(c.g.c) => \(\widehat{MAB}=\widehat{MNC}\)(hai góc tương ứng)
=> CN // AB.
b) Vì \(\Delta\)ABC vuông tại A nên \(AB\perp AC\)
Ta có : CN // AB mà AB \(\perp\)AC nên NC \(\perp\)AC hay \(\widehat{ACN}=90^0\)
Xét \(\Delta\)ABC và \(\Delta\)CNA có :
AB = CN(gt)
AC chung
\(\widehat{BAC}=\widehat{NCA}\)
=> \(\Delta\)ABC = \(\Delta\)CNA(c.g.c)
=> AN = BC(hai cạnh tương ứng)
Mà \(AM=\frac{1}{2}AN\)
=> \(AM=\frac{1}{2}BC\).
A B C M N
a, Xét \(\Delta ABM\)và \(\Delta CNM\)có:
BM=MC(M là trung điểm BC)
AM=MN(N là trung điểm AN)
\(\widehat{AMB}\)=\(\widehat{NMC}\)(2 góc đối đỉnh)
\(\Rightarrow\)\(\Delta AMB=\Delta NMC\)(c.g.c)
\(\Rightarrow\)CN=AB(2 cạnh tương ứng)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{MNC}\)(2 góc tương ứng)(1)
Mà 2 góc ở vị trí so le trong(2)
Từ (1) và (2) \(\Rightarrow\)CN\(//\)AB
b,Xét \(\Delta ABC\)và \(\Delta CNA\)có:
AC:cạnh chung
AB=NC(cmt)
\(\widehat{BAC}=\widehat{ACN}=90^0\)(CN \(//\)AB)
\(\Rightarrow\)\(\Delta ABC=\Delta CNA\)(c.g.c)
\(\Rightarrow BC=AN\)(2 cạnh tương ứng)
Mà \(AM=MN=\frac{1}{2}AN\)(M là trung điểm AN)
\(\Rightarrow AM=\frac{1}{2}BC\)