K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

a) xét tam giác AME và tam giác BMC  có

AM = MB ( gt)

góc AME = góc BMC (đđ)

ME=MC(gt)

=> tam giác AME = tam giác BMC (cgc)

=> AE=BC ( cctư) (1)

=> góc EAM = góc MBC (cgtư)

mà chúng ở vị trí so le trong  nên AE//BC

b Xét tam giác AES và tam giác CDS có 

AS=CS(gt)

góc ASE= góc CSD (đđ)

ES=SD (gt)

=> tam giác AES= tam giác CDS (cgc)

=>CD=AE(2)

từ (1) &(2)=> CD=BC

mặt khác ta có tam giác AES = tam giác CDS (cmt)

=> góc EAS= góc DCS ( cgtư)

mà chúng ở vị trí so le trong nên AE // CD

Ta có AE//BC (cmt)

AE//CD (cmt)

=> BCD thẳng hàng

mà BC=CD (cmt)

=> C là trung điểm BC

 

17 tháng 12 2021

cc laf j\

 

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

a: Xét ΔAME và ΔDMB có

MA=MD

\(\widehat{AME}=\widehat{DMB}\)

ME=MB

Do đó: ΔAME=ΔDMB

Xét tứ giác AEDB có 

M là trung điểm của AD

M là trug điểm của EB

Do đó: AEDB là hình bình hành

Suy ra: AE//BC

b: Xét tứ giác AFDC có

M là trug điểm của AD

M là trung điểm của FC

Do đó: AFDC là hình bình hành

Suy ra: AF//BC

mà AE//BC

và AF,AE có điểm chug là A

nên E,A,F thẳng hàng

27 tháng 2 2020

b1 : 

A B C I

tự cm tam giác ABC vuông

=> góc ABC + góc ACB = 90 (đl)

BI là pg của góc ABC => góc IBC = góc ABC : 2

CI là pg của góc ACB => góc ICB = góc ACB : 2

=> góc IBC + góc ICB = (góc ABC + góc ACB)  : 2

=> góc IBC + góc ICB = 45

xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180

=> góc BIC = 135

19 tháng 11 2017

A B C M H 1 2

a.Xét tam giác AMH và tam giác BMC có:

MA=MB(M là trung điểm AB)

MH=MC(gt)

góc M1=góc M2( đối đỉnh)

=> tam giác AMH=tam giác BMC( gcg)

b. Ta có: MA=MB và MH=MC (gt)

=> BHAC là hính bính hành

=> AH // BC

c.Bn xem lại câu này nha ..IN đề k cho bn ơi

( p/S: hình vẽ k dc đẹp..bn thông cảm ^^)

19 tháng 11 2017

A B C M H

a,Xét \(\Delta AMH\) và \(\Delta BMC\) có:

MA = MB (gt)

góc AMH = góc BMC (gt)

MH = MC (gt)

Do đó \(\Delta AMH=\Delta BMC\left(c.g.c\right)\)

b,Vì \(\Delta AMH=\Delta BMC\) (câu a) => góc AHM = góc BCM (2 góc tương ứng)

Mà góc AHM và góc BCM là cặp góc so le trong nên AH // BC

c, đề thiếu????