Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha bạn
a) tam giác ABC có E là tđ của AB,D là tđ của AC
=> ED là đtb của tam giác ABC
=> ED// BC và ED=1/2BC (1)
=> tứ giác BEDC là hình thang
b) tam giác GBC có M là tđ của GB,N là tđcủa GC
=> MN là đtb của tam giác GBC
=> MN//BC và MN=1/2BC (2)
từ (1),(2)=> ED//MN và ED=MN
=> tứ giác MEDN là hbh
c) tứ giác MEDN là hcn <=> MEDN là hbh có 2 đường chéo bằng nhau
<=> EN=DM
mà EN=2/3EC,DM=2/3DB=> EC=BD
hình thang BEDC có EC=BD=> BEDC là h thang cân => góc EBC=DCB
=> tam giác ABC cân tại A
vậy tam giác ABC cân tại A thì ......
d) kẻ đường cao AH
gọi O là gđ của AH và ED
tam giác AHB có E là tđ của AB,EO//BH (ED//BC)
=> O là tđ của AH
=> OH=1/2AH
Sbedc=1/2(ED+BC).OH
=1/2.(1/2BC+BC).1/2AH
=1/2.3/2BC.1/2AH
=3/4BC.1/2AH
=3/8BC.AH
=1/2.AH.BC.3/4
=3/4 Sabc
bạn tự vẽ hình nha
a)Trong tam giác ABC có: E là trung điểm của AB; D là trung điểm của AC
=> ED là đường trung bình của ABC
=> ED//BC và ED=\(\frac{1}{2}\)BC (1)
=> tứ giác BEDC là hình thang
b) Trong tam giác CBG có: M là trung điểm của GB; N là trung điểm của GC
=> MN là đường trung bình của tam giác CBG
=> MN//BC và MN=\(\frac{1}{2}\)BC (2)
Từ (1) và (2) => ED//MN và ED = MN
=> tứ giác MEDN là hình bình hành
c) Tứ giác MEDN là hcn <=> MEDN là hbh
Có 2 đường chéo bằng nhau <=> EN = DM
Mà EN = \(\frac{2}{3}\)EC; DM = \(\frac{2}{3}\)DB
Lại có: hình thang BEDC có EC = BD
=> BEDC là hình thang cân tại A
Vậy tam giác ABC tại thì tứ giác MEDN là hcn
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và ED=BC/2(1)
Xét ΔGBC có
M là trung điểm của BG
N là trung điểm của CG
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và MN=BC/2(2)
Từ (1) và (2) suy ra MN//DE và MN=DE
hay MNDE là hình bình hành
a) Xét \(\Delta ABC\)có:
\(AE=BE\)(giả thiết)
\(AD=CD\)(giả thiết)
\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE//BC\)(tính chất) (1)
Và \(2DE=BC\)(tính chất) (2)
Xét \(\Delta GBC\)có:
\(GH=BH\)(giả thiết)
\(GK=CK\)(giả thiết)
\(\Rightarrow HK\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow HK//BC\)(tính chất) (3)
Và \(2HK=BC\)(tính chất) (4)
Từ (1) và (3)
\(\Rightarrow ED//HK\)(5)
Từ (2) và (4)
\(\Rightarrow2DE=2KH\Rightarrow DE=KH\)(6)
Xét tứ giác DEHK có: (5) và (6).
\(\Rightarrow DEHK\)là hình bình hành (điều phải chứng minh)
A) ta có : ED là đường trung bình của tam giác ABC vậy ED song song với BC và ED=1/2BC*
HK là đường trung bình của tam giác BGC vậy HK song song với BC và HK=1/2BC**
Từ *và ** suy ra : ED=HK=1/2BC; ED song song với HK
vậy suy ra tứ giác EDHK là HBH
B) Nếu cần điều kiện từ tam giác ABC để tứ giác EDHK là HCN thì tam giác ABC cân tại A
Vì khi tam giác ABC cân tại A thì ta sẽ có : EB=DC
xét tam giác EBC và tam giác DCB có :
EB=DC ( theo CM trên )
BC cạnh chung
góc EBC = góc DCB ( vì ta đưa ra giả thiết tam giác ABC cân tại A)
vậy tam giác EBC= tam giác DCB
suy ra : EC=DB
mà ta lại có : EK=1/2EC
DH=1/2DB
vậy EK=DB: mà theo phần a ta lại có tứ giác DEHK là HBH
vậy tứ giác DEHK là HCN