Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính góc AMB, ta cần tính ∠A1, ∠B1
Trong tam giác vuông AHB có ∠A1= 90o − ∠(ABH) = 90o − 67 o = 23 o
Trong tam giác vuông AKB có ∠B1= 90o − ∠(BAK) = 90 o − 55o = 35o
Vậy trong tam giác AMB có
∠(AMB) = 180o − (∠A1+ ∠B1) = 180o − (23o + 35o) = 122o.
b Trong tam giác vuông ABK có ∠(ABK) + ∠(AKB) + ∠(BAK) = 180o
Nên ∠(ABK) = 180o - 55o - 90o = 35o ( 1 điểm)
Trong tam giác vuông ABH có ∠(BAH) + ∠(ABH) + ∠(BHA) = 180o
Nên ∠(BAH) = 180o - 67o - 90o = 23o ( 1 điểm)
Trong tam giác ABM có ∠(ABM) + ∠(BAM) + ∠(MAB) = 180o nên
∠(AMB) = 180o - 23o - 35o = 122o ( 1 điểm)
b Trong tam giác vuông ABK có ∠(ABK) + ∠(AKB) + ∠(BAK) = 180o
Nên ∠(ABK) = 180o - 55o - 90o = 35o ( 1 điểm)
Trong tam giác vuông ABH có ∠(BAH) + ∠(ABH) + ∠(BHA) = 180o
Nên ∠(BAH) = 180o - 67o - 90o = 23o ( 1 điểm)
Trong tam giác ABM có ∠(ABM) + ∠(BAM) + ∠(MAB) = 180o nên
∠(AMB) = 180o - 23o - 35o = 122o ( 1 điểm)
Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
b,
Trong \(\Delta\) AMB có:
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)
Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)
=> \(\widehat{BAC}+\widehat{ABC}=88^0\)
Trong \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=92^0\)
Ta lại có: hai đường phân giác \(\text{AA}_1\) và \(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác
=> CM là phân của của \(\widehat{C}\)
=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)
b,
Tương tự câu a, ta tìm được:
\(\widehat{ACM}=\widehat{BCM}=21^0\)
\(\widehat{MBA}=90^0-55^0=35^0\)
\(\widehat{MAB}=90^0-67^0=23^0\)
Do đó: \(\widehat{AMB}=122^0\)