K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

hình tam giác đó trông thế nào vậy bạn

8 tháng 2 2020

AC = 20 rồi không phải tính em ơi

xét tam giác AHC vuông tại H 

=> AC^2 = HC^2 + AH^2

AC = 20 (gt); HC = 5 (gt)

=> 20^2 = 5^2 + AH^2

=> AH^2 = 400 - 25

=> AH^2= 375

=> AH = \(\sqrt{375}\) do AH > 0

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

13 tháng 2 2018

Cho tam giác nhọn ABC,Kẻ AH vuông góc vơi BC,Tính chu vi tam giác ABC,AC = 20cm,AH = 12cm,BH = 5cm,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Đấy nha !

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

31 tháng 3 2018

Giải bài 60 trang 133 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:

AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400

⇒ AC = 20 (cm)

Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:

BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25

⇒ BH = 5cm

Do đó BC = BH + HC = 5 + 16 = 21 (cm)

19 tháng 1 2016

Xét tam giác AHC có góc AHC=90

=>Tam giác AHC vuông tai H 

Áp dụng định lí Py ta go cho tam giác AHC , ta có 

AH^2+HC^2=AC^2

=>12^2+16^2=AC^2

=>400=AC^2

=>AC=20(cm)

Áp dụng định lí Py ta go cho tam giác AHB , ta có 

AH^2+HB^2=AB^2

=>12^2+HB^2=13^2

=>HB^2=25

=>HB=5(cm)

Ta có BH+HC=BC

=>5+16=BC

=>BC=21 (cm)

Vậy AC=20cm ; BC=21cm

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)

hay HB=5(cm)

Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=5+16=21(cm)

Vậy: AC=20cm; BC=21cm

13 tháng 1 2022

???tìm BC mà chị sao lại HB ạ;-;

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAC vuông tại H

\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)

\(\Rightarrow\) \(^{AC^2}\)\(^{12^2}\) + \(^{16^2}\)

\(\Rightarrow\) \(^{AC^2}\)= 144 + 256

\(\Rightarrow\) \(^{AC^2}\)= 400

\(\Rightarrow\) AC = 20 ( cm )

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAB vuông tại H

\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)

\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)

\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)

\(\Rightarrow\) \(BH^2\) = 169 - 144

\(\Rightarrow\) \(BH^2\) = 25

\(\Rightarrow\) BH = 5 ( cm )

Có: BH + HC = BC ( Vì H nằm giữa B và C )

\(\Rightarrow\) 5 + 16 = 21 ( cm )

Vậy AC = 20 cm

       BC = 21 cm 

Học tốt

 

 

 

10 tháng 8 2015

Ta có : AC^2=AH^2+HC^2 (định lí Pytago trong tam giác vuông ACH)

AC^2=12^2+16^2 AC^2=144+256 AC^2=400 AC=Căn 400=20(cm)

Ta có : AB^2=AH^2+HB^2 (định lí Pytago trong tam giác vuông ABH) 13^2=12^2+HB^2 169=144+HB^2 HB^2=169-144 HB^2=25

HB=Căn 25=5(cm) Ta có : BC=HB+HC BC=5+16 BC=21(cm)

10 tháng 8 2015

A B C H (Hình minh hoạ) AB = 13 cm, AH = 12 cm, HC = 16 cm

AH vuông góc với BC   => Tam giác ABH  và tam giác ACH vuông tại A

Áp dụng định lí Pi- ta - go trong tam giác AHC, có: 

     AC2 = AH2 + HC2

     AC2 = 122 + 162 = 400       => AC = 20 cm

Áp dụng đinh lí Pi - ta -go trong tam giác ABH, có:

    AB2 = AH2 + BH2

   132 = 122 + BH2           =>  BH2 = 132 - 122 = 25        => BH = 5 cm

   mà  HC + BH = BC  

          16  + 5   = 21 = BC

Vậy AC = 20 cm,  BC = 21 cm

Ta có : AC^2=AH^2+HC^2 (định lí Pytago trong tam giác vuông ACH) AC^2=12^2+16^2 AC^2=144+256 AC^2=400 AC=Căn 400=20(cm) Ta có : AB^2=AH^2+HB^2 (định lí Pytago trong tam giác vuông ABH) 13^2=12^2+HB^2 169=144+HB^2 HB^2=169-144 HB^2=25 HB=Căn 25=5(cm) Ta có : BC=HB+HC BC=5+16 BC=21(cm)

17 tháng 1 2016

áp dụng pitago tính đc BH cộng đoạn thẳng tính đc BC,áp dụng pitago tính đc AC