Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) xét tam giácABM và tam giác CMD có
AM=DM(gt)
BM=CM(vì M là trung điểm của BC)
góc BMA = gốc ĐMC (đối đỉnh)
=>tam giác ABM = tam giác DCM (c.g.c)
b ) nếu tam giác ABM = tam giác DCM (trứng minh trên)
=>góc AMB = góc DMC (cạnh tương ứng)
c ) không biết làm
Bài làm
a) Xét tam giác ABD và tam giác EBD
Ta có: BA = BE ( giả thiết )
\(\widehat{ABD}=\widehat{DBE}\)( BD là tia phân giác của góc ABC )
BD là cạnh chung
=> Tam giác ABD = tam giác EBD ( c.g.c )
=> DA = DE ( hai cạnh tương ứng )
Vậy DA = DE
b) Vì tam giác ABD = tam giác EBD
=> Góc BAD = góc BED ( hai góc tương ứng )
Mà góc BAD = 90o
=> BED = 90o
Vậy góc BED = 90o
Câu c) lỗi.
# Chúc bạn học tốt #
a,xét tam giac ABD và tam giac EBD có
BD chung
góc ABD = góc DBE(vì BDlà phân giác của góc ABE)
BA=BE(gt)
Do đó tam giác ABD bằng tam giác EBD(c.g.c)
suy ra DA=DE(2 cạnh tương ứng)
b,vì tam giac ABD=tam giác DBE=>góc a bằng góc BED
mà góc A=90 độ=>Góc BED=90độ
Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha.
b/ Xét ∆ABC có
^A+^ABC+^ACB=180° (đ.l tổng 3 góc)
=> ^ABC + ^ACB = 120°
=> ^ABC/2 + ^ACB/2 = 60°
=> ^CBD + ^BCE = 60°
=> ^CBI + ^BCI = 60°
=> ^BIC = 180° - 60° = 120°
a, Kẻ IF là pg ^BIC. (F thuộc BC)
=> ^BIF = ^CIF = 60°
Mà ^EIB + ^BIC = 180°
=> ^EIB =60°
=> ^EIB = ^DIC = 60° (đối đỉnh)
=> ^EIB = ^BIF = ^FIC = ^DIC = 60°
Khi đó
∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB
∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC
Do đó
BE + CD = BF + CF = BC
a) Xét ΔAEI vuông tại I và ΔAHI vuông tại I có
AI chung
IE=IH(gt)
Do đó: ΔAEI=ΔAHI(hai cạnh góc vuông)
Suy ra: AE=AH(hai cạnh tương ứng)(1)
Xét ΔAHK vuông tại K và ΔAFK vuông tại K có
AK chung
KH=KF(gt)
Do đó: ΔAHK=ΔAFK(hai cạnh góc vuông)
Suy ra: AH=AF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAEI=ΔAHI(cmt)
nên \(\widehat{EAI}=\widehat{HAI}\)(hai góc tương ứng)
hay \(\widehat{EAB}=\widehat{BAH}\)
Ta có: ΔAHK=ΔAFK(cmt)
nên \(\widehat{HAK}=\widehat{FAK}\)(hai góc tương ứng)
hay \(\widehat{HAC}=\widehat{FAC}\)
Ta có: \(\widehat{EAB}+\widehat{HAB}+\widehat{HAC}+\widehat{FAC}=\widehat{EAF}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{BAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot60^0=120^0\)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE\:}=\dfrac{180^0-\widehat{EAF}}{2}\)(Số đo của các góc ở đáy trong ΔAEF cân tại A)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-120^0}{2}\)
hay \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Vậy: \(\widehat{EAF}=120^0\); \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Cho hỏi trên đầu bài không có điểm I