K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0