K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao...
Đọc tiếp

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!

1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy

2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho A là trung điểm của BD. Chứng minh rằng:

      - Góc BCD = góc ABC + góc ADC

      - Góc BCD = 90 độ

3) Cho tam giác ABC. Vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD. Gọi M và N là trung điểm của BE và CD. Chứng minh tam giác AMN đều

4) Cho tam giác ABC cân, AB là cạnh đấy, góc C = 100 độ. Trên nửa mặt phẳng chứa điểm C, bờ là đường thẳng AB, dựng tia Ax tạo với AB một góc 30 độ và tia By tạo với BA một góc 20 độ. Hai tia Ax và By cắt nhau tại D. Tính góc ACD

5) Cho tam giác ABC cân tại A có góc A < 90 độ, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:

      - DE song song với BD

      - CE vuông góc với AB

0
28 tháng 5 2017

a) Ta có: AC vừa là trung tuyến vừa là đường cao của tam giác CBD

=> Tam giác CDB cân tại C

b) Ta có: AM song song với BC(gt) và A là trung điểm của DB

=> M cũng là trung điểm của CD (Định lý về đường trung bình)

c) M là trung điểm của CD (theo câu b) và N là trung điểm của CB(gt)

=> MN là đường trung bình của tam giác CBD => MN // DB

28 tháng 5 2017

\(4.\)- Vì \(\Delta CBD\)cân tại \(C\)(cmt)  \(\Rightarrow\) \(CA\)là tia phân giác \(\widehat{BCD}\)
                                                         \(\Rightarrow\) \(\widehat{BCD}=2.\widehat{BCA}=2.30^0=60^0\)
- Xét \(\Delta BCA\)vuông tại \(A\) \(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^0\)                   
                                              \(\Rightarrow\)\(\widehat{ABC}=90^0-\widehat{BCA}=90^0-30^0=60^0\)
- Xét \(\Delta CBD\)có \(\widehat{BCD}=60^0;\)\(\widehat{ABC}=60^0\) \(\Rightarrow\) \(\Delta CBD\)đều
- Xét  \(\Delta CBD\)đều  có:
  \(\cdot\) \(M\)là trung điểm của \(DC\) (cmt)   suy ra  \(BM\) là đường trung tuyến của \(DC\)
  \(\cdot\) \(A\) là trung điểm của \(DB\) (gt)      suy ra  \(CA\) là đường trung tuyến của \(DB\)
mà   \(BM\)cắt \(CA\) tại \(G\)  (gt)  suy ra \(G\)là trọng tâm của \(\Delta CBD\)
     nên  \(BG=2.GM=2.3=6\left(cm\right)\)
- Vì    \(\Delta CBD\)đều nên \(BM=CA\)suy ra \(GA=GM=3cm\)
- Xét \(\Delta ABG\) vuông tại \(A\)theo định lý Py-ta-go,
   ta được:           \(AB^2=BG^2-AG^2=6^2-3^2=27\)(cm)
                \(\Rightarrow\)  \(AB=\sqrt{27}\)       

 

24 tháng 3 2019

a. Ta có A+B+C=180 độ ( tổng 3 góc trong tam giác)

=> C= 180 độ - ( A+B) =60 độ

b. Xét 2 tam giác vuông : tam giác : DCA và DCM có :

DC  chung; góc DCA = góc DCM ( cd là phân giác của acm ); CM=CA (gt)

=>tam giác DCM=tam giác DCA (c.g.c)

c. xét hai tam giác vuông : DCA và KAC có :

AC chung; góc DCA = góc CAK ( so le trong vì DC // AK )

=> DCA=KAC(cgv. gn )=>AK=CD(2 góc tương ứng )

d. ta có:  tam giác : DCA = KAC ( câu c)=>AKC=ADC (2 góc tương ứng)

Mà CAK+AKC+KCA=180 độ ( tổng 3 góc trong tam giác)

=>AKC= 180-90-30=60 độ

vì KAC=ACD60/2=30 độ

12 tháng 8 2016

Kéo dài tia Ax // BC

Do Ax//BC => Góc xAB + Góc ABC = 180 độ => Góc xAB = 110 độ

Mà góc BAC = 80 độ => Góc xAC = 30 độ

Lại có Ax // BC =>Góc ACB = Góc xAC = 30 độ

28 tháng 7 2018

vẽ hình đã

a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}\left(=60^0\right)\)

nên ΔABD đều

Xét ΔACD có \(\widehat{DAC}=\widehat{DCA}\)

nên ΔACD cân tại D

b: Ta có: ΔABD đều

nên BA=BD(1)

Xét ΔABC vuông tại A có 

\(\sin30^0=\dfrac{AB}{BC}\)

=>AB=1/2BC(2)

Từ (1) và (2) suy ra BD=1/2BC

hay D là trung điểm của BC

c: Xét ΔABC có 

D là trung điểm của BC

DI//AB 

Do đó: I là trung điểm của AC
hay IA=IC