K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

a)xét tgAEB và tgADC có

A là góc chung

AE=AC(gt)

AB=AD(gt)

suy ra tgAEB = tgADC (c.g.c)

suy ra BE=AC(hai cạnh tương ứng

cho k trước đi rồi làm câu b;c;d cho

Xem tại : https://h.vn/hoi-dap/question/189392.html

A B C E D P H K x M N

a) xét \(\Delta EAB\)và \(\Delta CAD\)có:

\(\hept{\begin{cases}AE=AC\left(gt\right)\\\widehat{EAB}=\widehat{DAC}\left(đđ\right)\\AB=AD\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta EAB=\Delta CAD\)(c - g - c)

\(\Rightarrow BE=DC\)( 2 cạnh tương ứng)

b) có \(\hept{\begin{cases}BE=2MB\left(gt\right)\\CD=2ND\left(gt\right)\\BE=CD\left(cmt\right)\end{cases}}\)

\(\Rightarrow MB=ND\)

\(\Delta EAB=\Delta CAD\left(cmt\right)\)

\(\Rightarrow\widehat{D}=\widehat{ABE}\)( 2 cạnh tương ứng )

xét \(\Delta DAN\)\(\Delta BAM\)

\(\hept{\begin{cases}ND=MB\left(cmt\right)\\\widehat{D}=\widehat{ABM}\left(cmt\right)\\AD=AB\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta DAN=\Delta BAM\left(c-g-c\right)\)

\(\Rightarrow\)AM = AN ( 2 cạnh tương ứng )

       \(\widehat{DAN}=\widehat{MAB}\)( 2 cạnh tương ứng )

mà \(\widehat{DAN}+\widehat{NAB}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{MAB}+\widehat{NAB}=180^o\Rightarrow\widehat{MAN}=180^o\)

\(\Rightarrow\)M, N, A thẳng hàng

c) gọi BC cắt Ax tại P

\(\Rightarrow\hept{\begin{cases}BH\le BP\left(cgv\le ch\right)\\CK\le CP\left(cgv\le ch\right)\end{cases}}\)

\(\Rightarrow BH+CK\le BP+CP\)

\(\Rightarrow BH+CK\le BC\)

d) có\(BH+CK\le BC\left(cmt\right)\)

\(\Rightarrow GTLN\)của \(BH+CK=BC\)

dấu bằng xảy ra

\(\Leftrightarrow BH=BP;CK=CP\)

\(\Leftrightarrow H\equiv P;K\equiv P\)

\(\Leftrightarrow Ax\perp BC\)

\(\Rightarrow BH+CK\)lớn nhất

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn