Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔADB, ta có:
∠B +∠(A1 ) +∠(D1) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D1 ) =180o-(∠B +(A1)) (1)
Trong ΔADC, ta có:
∠C +∠(A2) +∠(D2) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D2) =180o-(∠C +∠(A2) ) (2)
+) Lại có: ∠B =∠C (gỉa thiết)
∠(A1 ) =∠(A2) (vì AD là tia phân giác của góc BAC) (3)
Từ (1), (2) và (3) suy ra: ∠(D1) =∠(D2)
Xét ΔABD và ΔACD, ta có:
∠(A1 ) =∠(A2) ( Vì AD là tia phân giác của góc BAC)
AD cạnh chung
∠(D1 ) =∠(D2) ( chứng minh trên).
Vậy: ΔABD= ΔACD (g.c.g)
Vậy: AB = AC (hai cạnh tương ứng)
DB = DC (hai cạnh tương ứng)
Bài 2:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
c: ΔADB vuông tại A
=>AD<DB
Sửa đề: góc b=góc c
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Suy ra: AB=AC
Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh BC
nên D là trung điểm của BC
hay DB=DC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) Vì BC=2 AB
Mà E là trung điểm của BC
=> AB= BE = EC
Xét ΔABD và ΔEBD có:
AB=BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD=ΔEBD (c.g.c)
=> góc ADB= góc EDB
=> DB là tia pg của góc ADE
b) VÌ ΔABD=ΔEBD( cmt)
=> góc BAD= góc BED=90
Mà : góc DEB + góc DEC=180
=> góc DEB= góc DEC
Xét ΔDEB và ΔDEC có:
DE:cạnh chung
góc DEB = góc DEC(cmt)
BE=CE(gt)
=> ΔDEB=ΔDEC(c.g.c)
=> BD=DC
c) Vì ΔDEB=ΔDEC(cmt)
=> góc B2= góc C
Mà: góc B+ góc C=90
<=> 2 B2+ góc C=90
<=> 3 góc B2=90
<=> B2=30
Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: ta có: ΔABD=ΔEBD
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
a: Xét ΔABC có BD là đường phân giác
nên AB/BC=AD/DC
=>AD/DC=AC/BC(1)
Xét ΔABC có CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AD/DC=AE/EB
=>ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
mà \(\widehat{DBC}=\widehat{EBD}\)
nên \(\widehat{EDB}=\widehat{EBD}\)
b: Xét ΔABC có DE//BC
nên AE/AB=AD/AC
mà AB=AC
nên AE=AD
hay ΔADE cân tại A
cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được
Xét tam giác ABD và tam giác ACD ta có:
Góc BAD = góc CAD (t/chất tia phân giác)
AD cạnh chung
Góc B = góc C (gt)
=> Tam giác ABD = tam giác ACD (g.c.g)
=> BD = DC (2 cạnh tương ứng)
AB = AC (2 cạnh tương ứng)
Mấy bài này cũng dễ mà, tự động não k đc à?