Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình sửa lại đề chút nha
Cho tam giác ABC, góc B=C= 40 độ. Kẻ phân giác BD. Chứng minh BD+AD=BC
( cho mink xin lỗi nha!!!!)
A B C D H E K
aXét 2 tam giác BHA và tam giác BHE có:
H1=H2=90
B1=B2(phân giác góc B)
BH chung
=> tam giác BHA = tam giác BHE(g.c.g)
b Chứng minh AK // DE mà
MÀ AK vuông góc vs BC
=> ED vuông góc vs BC
a, Xét △BHA vuông tại H và △BHE vuông tại H
Có: BH là cạnh chung
ABH = EBH (gt)
=> △BHA = △BHE (cgv-gn)
b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)
Xét △BAD và △BED
Có: AB = BE (cmt)
ABD = EBD (gt)
BD là cạnh chung
=> △BAD = △BED (c.g.c)
=> BAD = BED (2 góc tương ứng)
Mà BAD = 90o
=> BED = 90o
=> DE ⊥ BE
=> DE ⊥ BC
c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)
Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)
=> AD < DC
d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA
Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)
=> AK // DE (từ vuông góc đến song song)
=> KAE = AED (2 góc so le trong)
mà DAE = DEA (cmt)
=> KAE = DAE => KAE = CAE
Mà AE nằm giữa AK, AC
=> AE là phân giác CAK