Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M I ( (
GT | △ABC (ABC = 90o) . ACM = MCB = ACB/2 M AB ; N AC : CN = CB |
KL | a, △MBC = △MNC b, BN ⊥ CM c, Điều kiện △ABC để BNM = 30o |
Bài làm:
a, Xét △MBC và △MNC
Có: CB = CN (gt)
MCB = ACM (gt)
MC là cạnh chung
.=> △MBC = △MNC (c.g.c)
b, Gọi { I } = MC ∩ BN
Xét △NIC và △BIC
Có: CN = CD (gt)
NCI = ICB (gt)
IC là cạnh chung
=> △NIC = △BIC
=> NIC = BIC (2 góc tương ứng)
Mà NIC + BIC = 180o (2 góc kề bù)
=> NIC = BIC = 180o : 2 = 90o
=> IC ⊥ BN
Mà { I } = MC ∩ BN
=> MC ⊥ BN (đpcm)
c, Giả sử BNM = 30o
Vì △MBC = △MNC (cmt)
=> MBC = MNC (2 góc tương ứng)
Mà MBC = 90o
=> MNC = 90o
Xét △INM vuông tại I có: MNI + IMN = 90o (tổng 2 góc nhọn trong 1 tam giác)
=> 30o + IMN = 90o => IMN = 60o
Xét △MNC vuông tại N có: NMC + MCN = 90o (tổng 2 góc nhọn trong 1 tam giác)
=> 60o + MCN = 90o => MCN = 30o
Mà MCN = MCB = ACB/2
=> 2MCN = ACB
=> 2 . 30o = ACB
=> 60o = ACB
Vậy để BNM = 30o <=> △ABC vuông tại B và ACB = 60o
A B C E D 1 2
a) Xét tam giác ABD và tam giác AED có :
AB = AE ( gt )
góc BAD = góc EAD ( gt )
AD chung
=> tam giác ABD = tam giác AED ( c-g-c )
=> BD = DE ( 2 c.t.ứ )
=> đpcm
b) Để tam giác ADB = tam giác ADC thì AB = AC
=> tam giác ABC cân tại A
c) Để DE vuông góc với AC thì góc AED = 900
Mặt khác ta có : góc ABD = góc AED ( vì tam giác ABD = tam giác AED ) = 900
=> AB vuông góc với BC
=> tam giác ABC vuông tại B
Bạn tự vẽ hình và GT;KL nhé!
Xét tam giác ABD và tam giác ADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác góc BAC)
AD chung
Suy ra tam giác ABD= tam giác AED(c.g.c)
suy ra DB=DE(2 cạnh tương ứng)
b) Tam giác ABC cân tại A(vì khi đó E trùng C nên từ tam giác ABD= tam giác AED ta có tam giác ADB = tam giác ADC)
c) Để DE vuông góc AC thì góc AED=90 độ mà tam giác ABD= tam giác AED nên góc ABD= góc AED=90 độ hay tam giác ABC vuông tại B
Chúc bạn học tốt!
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
a) Chứng minh được tam giác ABH= tam giác ACH (ch-cgv)
Suy ra: HB=HC (2 góc tương ứng). Vậy H là trung điểm BC.
Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH.
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH có:
+ Góc ADH = Góc AEH = 90o (HD vuông góc AB, HE vuông góc AC)
+ AH là cạnh chung
+ Góc DAH= Góc EAH(do tam giác ABH= tam giác ACH)
=> tam giác ADH = tam giác AEH (ch-gh)
Suy ra HD=HE (2 góc tương ứng)
Suy ra tam giác HDE cân tại H.
Xét ΔAHBvà ΔAHCΔAHBvàΔAHCcó:
AHBˆ=AHC=ˆAHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52−42=52=42+AH2⇒AH2=52−42= 25 - 16 = 9 = 3232
Vậy AH = 3 cm.
c) Xét ΔHDBvà ΔHECΔHDBvàΔHEC, ta có:
HDBˆ=HECˆHDB^=HEC^ = 90 độ ( gt )
BH = CH ( câu a )
Do đó: ΔHDB=ΔHECΔHDB=ΔHEC( cạnh huyền - góc nhọn )
⇒DH=HE⇒DH=HE ( 2 cạnh tương ứng ) (1)
Từ (1) => ΔHDEΔHDE cân tại H.
Chúc bạn học tốt ( tớ có 2 cách làm nhưng bạn kẻ hình nhé )