K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)

Do đó \(AD=BC\)

b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)

Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC

c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC

Mà AE//BC nên A,D,E thẳng hàng

Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)

Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)

Vậy A là trung điểm DE

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)

 

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

11 tháng 12 2021

CÍU

 

11 tháng 12 2021

Đợi mình tí!

25 tháng 7 2016

Toán lớp 7Trang 2 nek, z là hết mờ hen^^

25 tháng 7 2016

Toán lớp 7Trang 1 nek

a: Xet tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD=BC

b: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hình bình hành

=>AE//BC

20 tháng 11 2017

bài 2) 

   Ta có:  16x : 2y = 128

    \(\Leftrightarrow\)24x : 2y = 27

    \(\Leftrightarrow\)24x - y = 27

   \(\Leftrightarrow\)4x - y = 7   (1)

Ta lại có:   x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y   (2)

Thay (2) vào (1) ta đc: 

            4*3y - y = 7

     \(\Leftrightarrow\)11y = 7

      \(\Leftrightarrow\)y = \(\frac{7}{11}\)

       \(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)

20 tháng 11 2017

3, 

A B C M N E F

a, Xét t/g AME và t/g BMC có:

MA = MB (gt)

ME = MC (gt)

góc AME = góc BMC (đối đỉnh)

Do đó t/g AME = t/g BMC (c.g.c)

b, Vì t/g AME = t/g BMC (câu a) =>  góc AEM = góc BCM (2 góc tương ứng)

Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC

c, Xét t/g ANF và t/g CNB có:

AN = CN (gt)

NF = NB (gt)

góc ANF = góc CNB (đối đỉnh)

Do đó t/g ANF = t/g CNB (c.g.c)

=> AF = BC (2 cạnh tương ứng)

d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)

Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC

Ta có: AE // BC, AF // BC 

=> AE trùng AF

=> A,E,F thẳng hàng (1)

Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)

Ta lại có: AE = BC, AF = BC => AE = AF (2)

Từ (1) và (2) => A là trung điểm của EF