K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3

A) vì ΔABC là Δ vuông tại A nên \(\widehat{A}=90^0\)

số đo của \(\widehat{C}\) là: \(\widehat{B}+\widehat{C}=\widehat{A}\Rightarrow\widehat{C}=\widehat{A}-\widehat{B}=90^0-60^0=30^0\)

TA CÓ: \(\widehat{A}>\widehat{B}>\widehat{C}\)

\(\Rightarrow BC>AC>AB\)

 

b) xét Δ vuông ABE và Δ vuông HBE, có:

\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

BE là cạnh chung

⇒ ΔABE = ΔHBE (ch-gn)

⇒ AB = BH (2 cạnh tương ứng)

xét ΔABH có: AB = BH (cmt)

⇒ ΔABH là Δ cân

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

19 tháng 4 2019

a) Xét t/g ABD và t/g HBD có:

AB = BH (gt)

ABD = HBD ( vì BD là phân giác ABC)

BD là cạnh chung

Do đó, t/g ABD = t/g HBD (c.g.c)

=> BAD = BHD = 90o (2 góc tương ứng)

=> DH _|_ BC (đpcm)

b) t/g ABD = t/g HBD (câu a)

=> ADB = HDB (2 góc tương ứng)

Mà ADB + HDB = ADH = 110o

Do đó, ADB = HDB = 110o : 2 = 55o

t/g ABD vuông tại A có: ABD + ADB = 90o

=> ABD + 55o = 90o

=> ABD = 90o - 55o = 35o

k nhé

19 tháng 4 2019

mình lm nhầm nhé

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
28 tháng 4 2020

Bài 1 :

a) Vì \(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABC\)ta có :

\(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}=\frac{110^0}{2}=55^0\)

b) Xét \(\Delta ABH\)và \(\Delta ACH\)có :

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(AB=AC\left(gt\right)\)

\(AH\)chung

=> \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

=> \(\widehat{HAB}=\widehat{HAC}\)(hai góc tương ứng)

=> AH là tia phân  giác của góc A

Bài 2 : a) Xét \(\Delta ABC\)ta có :

AB2 + BC2 = AC2(định lí)

=> 62 + 82 = AC2

=> 36 + 64 = AC2

=> AC2 = 100

=> AC = 10(cm)

b) Xét \(\Delta ABE\)và \(\Delta AHE\)có :

\(\widehat{B}=\widehat{H}=90^0\)

AE chung

\(\widehat{BAE}=\widehat{HAE}\left(gt\right)\)

=> \(\Delta ABE=\Delta AHE\left(ch-gn\right)\)

c) Vì \(\Delta ABE=\Delta AHE\)=> AB = AH => \(\Delta ABH\)cân tại A

28 tháng 4 2020

bai nay co ke hinh ko

11 tháng 2 2020

​Cho tam giác ABC vuông tại A có góc C = 30 độ,Tia phân giác góc B cắt BC tại E,Từ E vẽ EH vuông góc với BC,So sánh các cạnh của tam giác ABC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Nek bn

11 tháng 2 2020

Sao vậy ?

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=EB

b: AB<AC

=>góc C<góc B

=>góc C<45 độ

=>gócEDC>45 độ

=>góc C<góc EDC

=>ED<EC

=>DA<AM<DM