Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1. kẻ đường cao AH ( H thuộc BC)
xét tam giác ABH có AH= BH .tanB
xét tam giác ACH có AH= CH.tanC
~> BH = CH.tanC/tanB
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9
CH=9tanB/(tanB+tanC)
xét tam giác ACH có AC=CH/cosC
~> AC =7,91
câu 2: thì chác là : trong tam giác vuông canh đối diện với góc 30 độ bằng nửa cạnh huyền ~> OAB là tam giác vuông tại A thì OB max = 2
câu 3
có sin^2(10)=sin^2(170)=sin^2(190)=sin^2(35...
....................................
rui` ban. làm típ đi ^^!
còn phần tiếp theo thì bạn kia đã có rùi
kẻ đường cao AH ( H thuộc BC)
xét tam giác ABH có AH= BH .tanB
xét tam giác ACH có AH= CH.tanC
~> BH = CH.tanC/tanB
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9
CH=9tanB/(tanB+tanC)
xét tam giác ACH có AC=CH/cosC
~> AC =7,91
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối