Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD
a) Chứng minh tứ giác BMFO nội tiếp
b) chứng minh HE//BD
c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )
Chịu @ _@
bạn tự vẽ hình nha!!!!!!!!!!
a) xét đg tròn (o) có: góc AIB = 90 độ ( góc nt chắn nửa đg tròn) => góc KIB =90 độ
có góc MHB = 90 độ( MN vuông góc vs AB) => goc KHB = 90 độ
xét tg BHKI ta có: góc KHB = 90 độ ( cmt)
góc KIB = 90 độ (cmt)
==> góc KHB + góc KIB = 90 + 90 = 180 độ
mà 2 góc KHB và góc KIB ở vị trí đối nhau ==> tg BHKI nt( tổng 2 góc đối = 180 độ)
b) từ tg BHKI nt (cma) => góc CKI = góc IBH ( góc ngoài tại đỉnh K = góc trong của đỉnh đối diện B)
=> góc CKI = góc CBH ( I thuộc CB)
xét tam giác CIK và tam giác CHB ta có: góc C chung
góc CKI = góc CBH ( ctm)
==> tam giác CIK đồng dạng vs tam giác CHB (g.g)
=> \(\frac{CI}{CK}=\frac{CH}{CB}\)( tỉ số đồng dạng)
==> CI . CB= CK. CH ( đpcm)
a: góc ADH=góc AEH=90 độ
=>ADEH nội tiếp
b: góc AED=góc AHD
=>góc AED=góc DBC
=>ECBD nội tiếp
=>góc EBH=góc EDC
R cau c) dau a:)))