Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C M E
a/ Xét tam giác ABM và tam giác EBM có:
BM: chung
\(\widehat{ABM}\)=\(\widehat{EBM}\) (vì BM là phân giác \(\widehat{ABE}\))
AB = EB (GT)
Vậy tam giác ABM = tam giác EBM (c.g.c)
b/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> AM = EM (2 cạnh tương ứng)
c/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> \(\widehat{A}\)=\(\widehat{BEM}\)=900 (2 góc tương ứng)
Ta có hình vẽ:
A F B C D E a/ Trong tam giác ABC có:
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800 (tổng 3 góc của tam giác)
900 + 600 + \(\widehat{C}\) = 1800
=> \(\widehat{C}\) = 1800 - 900 - 600 = 300
Ta có: \(\widehat{B}\)=600, BD là phân giác góc B
=> \(\widehat{ABD}\)=\(\widehat{EBD}\)=300
b/ Xét tam giác ABD và tam giác EBD có:
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{EBD}\) (GT)
BD : cạnh chung
Vậy tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng)
c/ Xét tam giác BAD và tam giác FAD có:
AD: cạnh chung
AB = AF (GT)
\(\widehat{BAD}\)=\(\widehat{FAD}\) = 900
Vậy tam giác BAD = tam giác FAD (c.g.c)
=> tam giác BAD = tam giác FAD = EBD
Trong tam giác ABD có:
\(\widehat{BAD}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\) = 1800
900 + 300 + \(\widehat{BDA}\) = 1800
=> \(\widehat{BDA}\) = 600
Vì tam giác BAD = tam giác FAD = tam giác EBD
nên \(\widehat{FDA}\)=\(\widehat{ADB}\)=\(\widehat{BDE}\)=600 (các góc tương ứng)
Ta có: \(\widehat{FDA}\)+\(\widehat{ADB}\)+\(\widehat{BDE}\)=600+600+600=1800
=> \(\widehat{FDE}\)=1800
hay E,D,F thẳng hàng (đpcm)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Vậy: \(\widehat{BED}=90^0\)
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(ΔABC vuông tại A)
nên ˆBED=900BED^=900
Vậy: ˆBED=900BED^=900
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
A B C E D
Xét tam giác ABD và tam giác EBD có :
AB = BE (trung điểm)
góc ABD = góc EBD (phân giác) => tam giác ABD = tam giác EBD (c.g.c)
BD chung
=> góc BDA = góc BDE
Mà DB thuộc góc ADE
=> DB là phân giác của góc ADE
b) Ta có góc BAD = góc BED (2 góc tương ứng)
Vì góc BED kề bù với góc CED
=> góc BED + CED = 180
mà góc BED = 90
=> góc CED = 90
Xét tam giác BED và tam giác CED có :
BE = CE
Góc BED = góc CED => tam giác BED = tam giác CED (c.g.c)
DE chung
=> BD = CD (2 cạnh tương ứng)
c) tự làm
Từ 2 tam giác bằng nhau BED và tam giác CED , có
góc DBE = ECD (2 góc tương ứng )
Mà góc ABD = góc DBE = góc ECD (1)
Xét tam giác ABC có :
góc BAC + góc ABC + góc BCA = 180
Mà góc BAC = 90 ; và (1)
=> góc ABC + góc BCA = 2.góc ABD + góc ABD = 90
=> 3. góc ABD = 90
=> góc ABD = 30
=> ABD = góc DBE = góc ECD = 30
=> Góc ABC = 60 ; góc BCA = 30