Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!
Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+62
BC2=36+36
BC2=72
⇒BC=\(\sqrt{72}\)
xét hai tam giác vuông AND và HBD có:
\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )
BD là cạnh chung
⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)
⇒AB=HB(2 cạnh tương ứng)
⇒ΔABH là tam giác cân
gọi D' là giao điểm của AH và BD ta có:
xét ΔABD' và ΔHBD' có:
\(\widehat{DBH}\) =\(\widehat{DBA}\) (BC là tia phân giác của\(\widehat{HBA}\) )
AB=HB(ΔABH cân tại B)
\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)
⇒ ΔABD' = ΔHBD' (G-C-G)
⇒HD'=AD'(2 cạnh tương ứng)
vì ΔABD' = ΔHBD'
⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)
Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)
Từ (1)và(2) ⇒ D'B⊥AH(3)
Từ (1)và(3) ⇒BD là đường trung trực của AH