\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

tách ra đi dài quá ak

14 tháng 2 2016

moi hok lop 6

4 tháng 10 2019

có vẽ hình ko

29 tháng 7 2019

a) Xét tam giác BAD và tam giác BAC, có:

          góc BAD = góc BAC = 90o              (gt)

          BA: cạnh chung

          góc ABD = góc ABC                (Vì AB là p/g của BC)

Nên: Tam giác BAD = tam giác BAC                      ( g - c - g)

=> BD = BC                     (2 cạnh t/ư)

Ta có: AC vuông góc với AB                            (gt)

           AC vuông góc với CF                            (gt)

   => AB // CF                    (Quan hệ từ _|_ -> //)

Nên: góc ABC = góc FCB                         (2 góc so le trong = nhau)

Lại có: CD vuông góc với CF                       (gt)

            BF vuông góc với CF                       (gt)

=> CD // BF                     (Quan hệ từ _|_ -> //)

Hay: AC // BF

Do đó: góc ACB = góc FBC                       (2 góc so le trong = nhau)

Xét tam giác BFC và tam giác CAB, có:

          góc FBC = góc ACB                         (cmt)

          BC: cạnh chung

          góc FCB = góc ABC                         (cmt)

Nên: tam giác BFC = tam giác CAB                              ( g - c - g)

   => góc BAC = góc CFB                        ( 2 góc t/ư)

 Mà: góc BAC = 90o

Do đó: góc CFB = góc BAC = 90o

Xét tam giác BEF và tam giác BCF, có:

          góc EBF = góc CBF                       (Vì BF là p/g của góc CBE)

          BF: cạnh chung

          góc BFE = góc BFC = 90o                       (cmt)

Nên: tam giác BEF = tam giác BCF                      ( g - c - g)

Vậy góc BCF = góc BEF                        ( 2 góc t/ư)

Hay: góc BCE = góc BEC                        (đpcm)

b) Trong tam giác ABC, có:

            góc A + góc B + góc C = 180o                   (T/c tổng 3 góc trong 1 tam giác)

Vậy ........

c)Ta có: góc BFC = 90o                   (cm câu a)

Vậy BF vuông góc với CE                         (đpcm)

Mk ko chắc chắn ở câu b nhé!                          

6 tháng 2 2019

a, Chứng minh tam giác ADB=tam giác ADC

=>góc BAD=góc CAD=>AD là tia phân giác của góc BAC=>góc BAD=góc CAD=10độ

b, Do tam giác ABC cân tại A và tam giác DCB đều nên góc ABC=(180độ-20độ):2= 80độ;góc DBC= 60độ

=> góc ABD=80 độ - 60 độ=20độ

Tia BM là tia phân giác của góc ABD=> góc ABM=góc DBM=10độ

Chứng minh được tam giác ABM = tam giác BAD(g.c.g) => AM=BD mà BD =BC nên AM=BC (đpcm)

Câu hỏi của Lê Hà - Toán lớp 7 | Học trực tuyến

Theo đề bài ta có :

góc ABD = góc DBC

mà AB // Dy nên :

góc ABD = góc BDy

góc DBC = góc ADB

vì Bx // Et nên :

góc BDE = góc DEt

góc DBC = góc tEC

=> góc tEC = góc DEt

=> Et là tia phân giác của góc CED

đây giải có khi sai nên trước khi chép vào cân nhắc kĩ nhé

29 tháng 7 2019

bạn ơi bạn biết vẽ hình ko 

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm