K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

[ALFAZI | BIGGAME]: BACK TO SCHOOL WITH ALFAZI - NHẬN NGAY VÔ VÀN QUÀ TẶNG HẤP DẪN!

Nhanh tay kêu gọi bạn bè ĐĂNG KÍ TÀI KHOẢN tại web để tham gia trò chơi và nhận các phần quà HOT NÀO! 

LINK THAM GIA: http://bit.ly/nhanquacungalfazi 

LINK THAM GIA: http://bit.ly/nhanquacungalfazi

LINK THAM GIA: http://bit.ly/nhanquacungalfazi

LINK THAM GIA: http://bit.ly/nhanquacungalfazi

★Giải thưởng:

✿Giải nhất: 01 Balo Unisex JANSPORT T5019FL (Tổng giải thưởng lên đến:1,000,000 VND) 

✿Giải nhì: 02 Máy Tính Khoa Học Casio FX-580VN X (Tổng giải thưởng lên đến: 1,200,000 VND) 

✿Giải ba: 03 Áo GAME ERROR JACKET - GEJ (Tổng giải thưởng lên đến: 1,200,000 VND) 

(Ngoài ra BTC sẽ chuẩn bị phần quà dự bị cho những bạn mời được nhiều bạn bè tham gia nhất) Link mời bạn bè: http://bit.ly/nhanquacungalfazi ------------------ 

★Bạn có thể tham gia chương trình để nhận các phần quà hấp dẫn bằng cách: 

▶Bước 1: Mời 03 bạn bè đăng kí tài khoản tại Web.(Link mời bạn bè: http://bit.ly/nhanquacungalfazi) 

▶Bước 2: Tag tên 3 người bạn đó vào kèm con số may mắn từ 000-999. 

▶Bước 3 (không bắt buộc): SHARE bài viết này về trang cá nhân trên facebook của bạn! 

★Yều cầu bắt buộc: ✔Mỗi người chơi chỉ được comment 1 lần và không được chỉnh sửa comment. ✔Tài khoản tham gia big-game phải là tài khoản thật, không phải tài khoản ảo săn game. ✔Trong suốt quá trình diễn ra big-game, nếu có vấn đề phát sinh ngoài ý muốn thì quyết định của BTC sẽ là quyết định cuối cùng. ------------------ ★Cách tính giải: Người chơi làm đủ 3 bước trên. 3 giải thưởng của BIGGAME lần lượt tương ứng với những người chơi đưa ra câu trả lời sớm nhất và có con số dự đoán trùng 3 chữ số cuối của 3 giải Đặc biệt – Nhất – Nhì của kết quả sổ số kiến thiết Miền Bắc ngày 10/09/2019. Nếu nhiều người chơi chọn các số trùng nhau thì phần thưởng sẽ dành cho người chơi trả lời sớm nhất. ------------------ ★Thời gian chơi: Từ ngày 10/08 đến 17h59p ngày 10/09/2019 Kết quả và quà tặng sẽ được trao cho người chơi vào ngày 15/09/2019. Chúc các bạn may mắn! ------------------

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0

b) Xét ΔABC vuông tại A và ΔHAC vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HC=AC^2/BC=20^2/25=16cm

Xét ΔACB vuông tại A có sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: Xét ΔHAB có HI/HA=HK/HB

nên IK//AB

=>KI vuông góc AC

Xét ΔCAK có

KI,AH là đường cao

KI cắt AH tại I

=>I là trực tâm

c: Xét ΔKBA và ΔIAC có

góc KBA=góc IAC

AB/AC=KB/IA=HB/HA

=>ΔKBA đồng dạng với ΔIAC

18 tháng 6 2021

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

31 tháng 10 2023

loading...  loading...  

1 tháng 11 2023

Em cảm ơn 🥰🥰