Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Goi BE,CG,AK la duong cao cua tam giac ABC\(\left(E\in AC,K\in BC,G\in AB\right)\)
Xet 2 tam giac vuong HKC va DKC ta co:
HK=DK(H doi xung voi D qua BC)
KC la canh chung
Do do:\(\Delta HKC=\Delta DKC\left(c-g-c\right)\)
Xet 2 tam giac vuong HKB va DKB ta co:
HK=DK(H doi xung voi D qua BC)
BK la canh chung
Do do:\(\Delta HKB=\Delta DKB\left(c-g-c\right)\)
Suy ra:\(\Delta HKB+\Delta HKC=\Delta KDB+\Delta KDC\left(1\right)\)
Ma:
\(\Delta BHC=\Delta HKB+\Delta HKC\left(2\right)\)
\(\Delta BDC=\Delta KDB+\Delta KDC\left(3\right)\)
Tu (1),(2) va (3) suy ra:\(\Delta BHC=\Delta BDC\)
b.Xet tam giac AGC ta co:\(\widehat{ACG}=40^0\)
Suy ra:\(\widehat{EHC}=50^0\)
Ma:\(\widehat{GHC}=\widehat{GHE}+\widehat{EHC}=180^0\)
\(\Rightarrow\widehat{GHE}=180^0-\widehat{EHC}=180^0-50^0=130^0\)
Hay \(\widehat{BHC}=130^0\)(\(\widehat{GHE}\)doi dinh \(\widehat{BHC}\))
Theo cau a ta co:\(\Delta BHC=\Delta BDC\)
Suy ra: \(\widehat{BHC}=\widehat{BDC}\)(2 goc tuong ung)
\(\Rightarrow\widehat{BDC}=130^0\)
a. Vì M đối xứng với H qua trục BC
⇒ BC là đường trung trực của HM
⇒ BH = BM ( tính chất đường trung trực)
CH = CM ( tính chất đường trung trực)
Suy ra: ∆ BHC = ∆ BMC (c.c.c)
b. Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E
H là trực tâm của ∆ ABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE ta có:
\(\widehat{DHE}=360^0-\left(\widehat{A}+\widehat{H}+\widehat{E}\right)\)
\(=360^0-\left(60^0+90^0+90^0\right)=120^0\)
\(\widehat{BHC}=\widehat{DHE}\) (đối đỉnh)
∆ BHC = ∆ BMC (chứng minh trên)
\(\Rightarrow\widehat{BMC}=\widehat{BHC}\)
Suy ra:\(\widehat{BMC}=\widehat{DHE}=120^0\)
a) Ta có: M đối xứng với H qua BC
Suy ra BC là đường trung trực của đoạn thẳng BC
mà B thuộc đường trung tực của đoạn thẳng BC suy ra BM=BH
và C thuộc đường trung trực của đoạn thẳng BC suy ra CM=CH
Xét tam giác BMC và tam giác BHC có: BM=BH (chứng minh trên), MC=MH(chứng minh trên), BC chung
Suy ra tam giác BMC=BHC
b) Trong tam giác ABC có AM là đường trung trực đồng thời là đường cao của cạnh BC suy ra tam giác ABC cân
Suy ra góc ABC = góc BCA=( 180o - 60o ) : 2= 60o
mà BM và CM là đường phân giác( tam giác ABC cân) suy ra góc MBC = góc MCB= 60 : 2=30o
Suy ra góc BMC= 180o - 30o + 30o = 120o
mà góc BMC= góc BHC suy ra góc BHC= 120o
Bạn có thể giải thích câu b rõ hơn dược không Lê Thị Hồng Hạnh!!!!!!!!!! do mình chua thấy tam giác ABC cân tai đâu....bạn giải thích dc hk@@
a: Ta có: H và D đối xứng nhau qua BC
nên BC là đường trung trực của HD
Suy ra: BH=BD và CH=CD
Xét ΔHBC và ΔDBC có
BH=BD
BC chung
HC=DC
Do đó: ΔHBC=ΔDBC
a: Ta có: M và H đối xứng nhau qua BC
nên BC là đường trung trực của MH
Suy ra: BH=BM và CH=CM
Xét ΔBHC và ΔBMC có
BH=BM
HC=MC
BC chung
Do đó: ΔBHC=ΔBMC
a) M đối xứng H qua BC
-> BC là đường trung trực MH
-> CH = CM ; BH = BM
Xét tam giác BHC và tam giác BMC:
CH = CM (cmt)
BC : chung
BH = BM (cmt)
-> Tam giác BHC = tam giác BMC (c-c-c)
b) Xét tứ giác ADHG:
\(\widehat{A}+\widehat{AGH}+\widehat{ADH}+\widehat{GHD}=360^o\)
\(\rightarrow\widehat{GHD}=360^o-\widehat{A}-\widehat{AGH}-\widehat{ADH}\)
\(\rightarrow\widehat{GHD}=360^o-60^o-90^o-90^o=120^o\)
\(\rightarrow\widehat{GHD}=\widehat{BHC}=120^o\)( đối đỉnh )
Mà \(\widehat{BHC}=\widehat{BMC}\)( tam giác BHC = tam giác BMC )
\(\rightarrow\widehat{BMC}=120^o\)
C D H M G B A
a: Xét ΔBHC và ΔBMC có
BH=BM
HC=MC
BC chung
Do đó: ΔBHC=ΔBMC