Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khác nè Phương: (đây là phương pháp chỉ ra một giá trị rồi chứng minh các giá trị còn lại không thỏa mãn)
a/ Giải
+) Với n = 0 thì \(n^2+2n+12=12\) không là số chính phương.
+) Với n = 1 thì \(n^2+2n+12=15\) không là số chính phương.
+) Với n = 2 thì \(n^2+2n+12=20\) không là số chính phương.
+) Với n = 3 thì \(n^2+2n+12=27\) không là số chính phương.
+) Với n = 4 thì \(n^2+2n+12=36=6^2\) là số chính phương.
+) Với n > 4 thì \(n^2+2n+12\) không là số chính phương vì:
\(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n^2+2n+12\)
\(\Leftrightarrow n^2+2n+12-n^2-2n-1>0\)
\(\Leftrightarrow11>0\) (luôn đúng)
Do vậy \(\left(n+1\right)^2< n^2+2n+12\) (1)
C/m: \(n^2+\left(2n+12\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-2n-12>0\)
\(\Leftrightarrow2n-8>0\) (luôn đúng do n > 4) (2)
Từ (1) và (2) suy ra với n > 4 thì \(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\) hay \(n^2+2n+12\) không là số chính phương.
Vậy 1 giá trị n = 4
b/ +)Với n = 0 thì \(n\left(n+3\right)=0\) là số chính phương
+) Với n = 1 thì \(n\left(n+3\right)=4\) là số chính phương
+) Với n > 1 thì \(n\left(n+3\right)\) không là số chính phương vì:
\(\left(n+1\right)^2< n\left(n+3\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n\left(n+3\right)\Leftrightarrow n^2+3n-n^2-2n-1>0\)
\(\Leftrightarrow n-1>0\) (đúng với mọi n > 1) (1)
Ta sẽ c/m: \(n\left(n+3\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-3n>0\)
\(\Leftrightarrow n+4>0\) (luôn đúng với mọi n > 0) (2)
Từ (1) và (2) suy ra với mọi n > 1 thì \(n\left(n+3\right)\) không là số chính phương.
Vậy n = 0;n = 1
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
link:Đọc sách vì tương lai | HÃY CHĂM SÓC MẸ
bn cũng thích lấy đại 1 câu hỏi còn chủ ý là nhờ bình chọn nhỉ? :)