K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Suy ra: BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HF là đường cao

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

hay AF/AC=AE/AB

Xét ΔAFE vuông tại A và ΔACB vuông tại A có 

AF/AC=AE/AB

Do đó:ΔAFE\(\sim\)ΔACB

4 tháng 3 2022

ôg ơi có hình vẽ k

 

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó:ΔHBA\(\sim\)ΔABC

2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)

23 tháng 3 2022

a) xét  tam giác ABH và tam giác CBA

có góc B chung

góc AGB= góc BAC=90

=>tam giác ABH đồng dạng tam giác CBA

=>\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

b) áp dụng định lý pytago có

AB2+AC2=BC2

Thay AB=8;AC=6

=>BC=10

Theo câu a)có:\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

thay số \(\dfrac{8}{10}=\dfrac{AH}{6}\)

=>AH=4,8

 

23 tháng 3 2022

undefined

hình

Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Suy ra: HF/HE=HB/HC

hay HF/HB=HE/HC

Xét ΔFHE và ΔBHC có 

HF/HB=HE/HC

\(\widehat{FHE}=\widehat{BHC}\)

Do đó: ΔFHE\(\sim\)ΔBHC