Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) t/g BAM = t/g BM'M (cạnh huyền-góc nhọn)
=> BA = BM' (2 cạnh t/ứ)
Gọi K là giao điểm của BM và AM'
t/g BAK = t/g BM'K (c.g.c)
=> BAK = BM'K (2 góc t/ứ)
=> 90o - BAK = 90o - BM'K
=> BAM - BAK = BM'M - BM'K
=> MAM' = MM'A
=> t/g AMM' cân tại M (dấu hiệu nhận biết t/g cân)
Chứng minh tương tự với t/g còn lại
b) xem lại đề
a.Xét tam giác ACN và N'CN có:
góc CAN = CN'N = 90*
CN là cạnh chung
góc NCA = NCN' (gt)
Suy ra :tam giác ACN = N'CN ( cạnh huyền góc nhọn )
Suy ra: NA = NN' ( hai cạnh tương ứng )
Vậy tam giác ANN' cân tại N
Tương tự ta có tam giác AMM' cân tại M.
b. A B C M N M' N'
Xet tam giac BAE va tam giac BDE co
Góc A = góc BDE (= 90 do )
Góc ABE= gốc DBE ( đó BE là tia phân giác của góc ABC)
Canh BE chung
Suy ra tam giác BAE= tam giác BDE ( cạnh huyền-góc nhọn)
Nên BA=BD
Mả EB <BD
Nen EB < AB