K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

`a)` 

Có `Delta ABC` cân tại `A(g t)`

`=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

Xét `Delta BEC` và `Delta CDB` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`

`=>Delta BEC=Delta CDB(c.h-g.n)`

`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )

`b)`

Có `Delta BEC=Delta CDB(cmt)`

`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )

`=>Delta BOC` cân tại `O`

`=>OB=OC`(dpcm)

Xét `Delta OEB` và `Delta ODC` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`

`=>Delta OEB=Delta ODC(c.h-g.n)`

`=>OE=OD`( 2 cạnh tương ứng )(dpcm)

`c)`

Có `Delta ABC` cân tại `A(g t)`

`=>AB=AC`

`=>A in ` trung trực của `Delta ABC(1)`

Có `OB=OC(cmt)`

`=>O in` trung trực của `Delta ABC(2)`

Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`

mà `Delta ABC` cân tại `A` 

Nên `OA` là phân giác `hat(BAC)` (dpcm)

24 tháng 12 2016

a) t/g ABC cân tại A

=> ABC = ACB ( tính chất tam giác cân)

Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:

BC là cạnh chung

DCB = EBC (cmt)

Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) t/g DCB = t/g EBC (câu a)

=> CD = BE (2 cạnh tương ứng)

DBC = ECB (2 góc tương ứng)

Mà ABC = ACB (câu a)

=> ABC - DBC = ACB - ECB

=> ABD = ACE

Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:

BE = CD (cmt)

EBO = DCO (cmt)

Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)

=> OB = OC (2 cạnh tương ứng) (1)

OE = OD (2 cạnh tương ứng) (2)

Từ (1) và (2) => đpcm

c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)

=> OAC = OAB (2 góc tương ứng)

=> AO là phân giác CAB (đpcm)

24 tháng 12 2016

A B C E D O

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (gt)

Góc A chung

=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (cm trên); AC = AB (gt)

=> DC = EB

Xét ΔEOB và ΔDOC có:

góc ABD = ACE (cm trên)

EB = DC (cm trên)

góc OEB = ODC (= 90)

=> ΔEOB = ΔDOC (g.c.g)

=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )

c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )

Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:

OE = DO ( cm trên )

AE = AD (câu b)

=> ΔAOE = ΔAOD ( cạnh góc vuông )

=> góc OAE = OAD ( 2 góc tương ứng )

Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.

Chúc học tốt Cathy Trang

 

18 tháng 1 2021

a) Xét 2 tam giác vuông tam giác ABD và tam giác ACE ta có:

AB = AC (GT)

Góc BAC: chung

=> Tam giác ABD = Tam giác ACE (c.h - g.n)

=> BD = CE (2 cạnh tương ứng)

b) Tam giác ABD = Tam giác ACE (cmt)

=> AD = AE (2 cạnh tương ứng)

Xét 2 tam giác vuông tam giác AEO và tam giác ADO ta có:

AD = AE (cmt)

OA: cạnh chung

=> Tam giác AEO = tam giác ADO (c.h - c.g.v)

=> Góc EAO = Góc DAO (2 góc tương ứng)

=> AO là phân giác của góc EAD

Hay: AO là phân giác của góc BAC

18 tháng 1 2021

xét j nữa vậy 

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

a)tam giác BDA = tam giác CEA (CH -GN)

 => BD =CE

b)tam giác ADO = tam giác AEO (CH - GN)

=> OD = OE

ta có : BD+OD = CE + OE

BD = CE; OD = OE; BD+OD=BO; CE+OE = CO

=> BO=CO

c) ta có BE là đường cao của tam giác BOC; CD là đường cao của tam giác BOC

=> OA là đường cao thứ 3

tam giác BOC cân tại O có đường cao cũng là đường phân giác nên OA là đường phân giác của góc BAC