Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
Có `Delta ABC` cân tại `A(g t)`
`=>hat(ABC)=hat(ACB)`
`=>hat(EBC)=hat(DCB)`
Xét `Delta BEC` và `Delta CDB` có :
`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`
`=>Delta BEC=Delta CDB(c.h-g.n)`
`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )
`b)`
Có `Delta BEC=Delta CDB(cmt)`
`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )
`=>Delta BOC` cân tại `O`
`=>OB=OC`(dpcm)
Xét `Delta OEB` và `Delta ODC` có :
`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`
`=>Delta OEB=Delta ODC(c.h-g.n)`
`=>OE=OD`( 2 cạnh tương ứng )(dpcm)
`c)`
Có `Delta ABC` cân tại `A(g t)`
`=>AB=AC`
`=>A in ` trung trực của `Delta ABC(1)`
Có `OB=OC(cmt)`
`=>O in` trung trực của `Delta ABC(2)`
Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`
mà `Delta ABC` cân tại `A`
Nên `OA` là phân giác `hat(BAC)` (dpcm)
a) t/g ABC cân tại A
=> ABC = ACB ( tính chất tam giác cân)
Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:
BC là cạnh chung
DCB = EBC (cmt)
Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) t/g DCB = t/g EBC (câu a)
=> CD = BE (2 cạnh tương ứng)
DBC = ECB (2 góc tương ứng)
Mà ABC = ACB (câu a)
=> ABC - DBC = ACB - ECB
=> ABD = ACE
Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:
BE = CD (cmt)
EBO = DCO (cmt)
Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)
=> OB = OC (2 cạnh tương ứng) (1)
OE = OD (2 cạnh tương ứng) (2)
Từ (1) và (2) => đpcm
c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)
=> OAC = OAB (2 góc tương ứng)
=> AO là phân giác CAB (đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (gt)
Góc A chung
=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )
Ta có: AD + DC = AC
AE + EB = AB
mà AD = AE (cm trên); AC = AB (gt)
=> DC = EB
Xét ΔEOB và ΔDOC có:
góc ABD = ACE (cm trên)
EB = DC (cm trên)
góc OEB = ODC (= 90)
=> ΔEOB = ΔDOC (g.c.g)
=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )
c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )
Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:
OE = DO ( cm trên )
AE = AD (câu b)
=> ΔAOE = ΔAOD ( cạnh góc vuông )
=> góc OAE = OAD ( 2 góc tương ứng )
Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.
Chúc học tốt Cathy Trang
a) Xét 2 tam giác vuông tam giác ABD và tam giác ACE ta có:
AB = AC (GT)
Góc BAC: chung
=> Tam giác ABD = Tam giác ACE (c.h - g.n)
=> BD = CE (2 cạnh tương ứng)
b) Tam giác ABD = Tam giác ACE (cmt)
=> AD = AE (2 cạnh tương ứng)
Xét 2 tam giác vuông tam giác AEO và tam giác ADO ta có:
AD = AE (cmt)
OA: cạnh chung
=> Tam giác AEO = tam giác ADO (c.h - c.g.v)
=> Góc EAO = Góc DAO (2 góc tương ứng)
=> AO là phân giác của góc EAD
Hay: AO là phân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
a)tam giác BDA = tam giác CEA (CH -GN)
=> BD =CE
b)tam giác ADO = tam giác AEO (CH - GN)
=> OD = OE
ta có : BD+OD = CE + OE
BD = CE; OD = OE; BD+OD=BO; CE+OE = CO
=> BO=CO
c) ta có BE là đường cao của tam giác BOC; CD là đường cao của tam giác BOC
=> OA là đường cao thứ 3
tam giác BOC cân tại O có đường cao cũng là đường phân giác nên OA là đường phân giác của góc BAC