Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D
Ta có
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3AC}{4}\)
\(BC=BD+CD=15+20=35cm\)
Ta có
\(BC^2=AB^2+AC^2\) (Pitago)
\(\Rightarrow35^2=\left(\dfrac{3AC}{4}\right)^2+AC^2\Rightarrow AC^2=784\Rightarrow AC=28cm\)
Ta có
\(AC^2=CH.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{784}{35}=22,4cm\)
\(\Rightarrow BH=BC-CH=35-22,4=12,6cm\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=12,6^2+22,4^2=660,52\Rightarrow AH=\sqrt{660,52}\)
Ta có
\(HD=BD-BH=15-12,6=2,4cm\)
Xét tg vuông AHD có
\(AD^2=AH^2+HD^2\) (Pitago)
Bạn tự tính nốt nhé
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow BH=\dfrac{9}{16}CH\)
Ta có: BH+CH=35
\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow CH=22.4\left(cm\right)\)
\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
Ta có \(BC=BD+CD=35\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)
Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Ta có BC=BD+DC=20+15=35(cm)
Ta có AD là phân giác \(\widehat{BAC}\) nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{25}=\dfrac{BC^2}{25}=49\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{49\cdot9}=21\\AC=\sqrt{49\cdot16}=28\end{matrix}\right.\)
Áp dụng HTL trong tam giác: \(AC^2=CH\cdot BC\Leftrightarrow28^2=CH\cdot35\Leftrightarrow CH=22,4\Leftrightarrow BH=BC-CH=12,6\)
và \(AH^2=BH\cdot HC=22,4\cdot12,6=282,24\)
Mà \(CH=CD+DH\Leftrightarrow22,4=DH+20\Leftrightarrow DH=2,4\)
Xét tam giác AHD vuông tại H, theo định lí Pytago có
\(AD=\sqrt{AH^2+DH^2}=\sqrt{282,24+2,4^2}=\sqrt{288}=12\sqrt{2}\approx16,97\)
Tick nha bạn
Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath