K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2020

Câu 1.

Gọi DI là trung trực BC

Xét ΔBIDvà ΔCID:

IDchung

\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)

BD = CD(như trên)

⇒ΔBID = ΔCID (c.g.c )

\(\widehat{IBD}=\widehat{C}\)(2gtu)

\(\widehat{B}-\widehat{C}\) = 40

hay \(\widehat{B}-\widehat{IBD}\) = 40

\(\widehat{IBD}+\widehat{ABI}=B\)

\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)

16 tháng 3 2020

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

31 tháng 5 2019

19 tháng 6 2021

Hehj

29 tháng 4 2022

loading...

a, Vì \(\Delta ABC\) đều và \(O\) là giao điểm 3 đường trung trực nên \(AO\) là tia phân giác của \(\widehat{A}\)

\(\Rightarrow\widehat{MAO}=\dfrac{\widehat{BAC}}{2}=30^o\)

b, Tương tự a, \(\widehat{OCB}=30^o\)

Chứng minh được: \(\Delta MAO=\Delta OPC\left(c.g.c\right)\)

Ta có: \(\Delta MAO=\Delta OPC\Rightarrow OM=OP\left(1\right)\)

c, Tương tự b

\(\Delta MAO=\Delta NBO\left(c.g.c\right)\)

\(\Rightarrow ON=OM\left(2\right)\)

Từ (1) và (2) suy ra O là giao điểm

3 đương trung trực của tam giác MNP

 

20 tháng 3 2019

Mình cần gấp

20 tháng 3 2019

giống anh sắp thi rùi